Publications by authors named "Ali Kashif Bashir"

The COVID-19 pandemic has disrupted people's lives and caused significant economic damage around the world, but its impact on people's mental health has not been paid due attention by the research community. According to anecdotal data, the pandemic has raised serious concerns related to mental health among the masses. However, no systematic investigations have been conducted previously on mental health monitoring and, in particular, detection of post-traumatic stress disorder (PTSD).

View Article and Find Full Text PDF

Article citation creates a link between the cited and citing articles and is used as a basis for several parameters like author and journal impact factor, H-index, i10 index, ., for scientific achievements. Citations also include self-citation which refers to article citation by the author himself.

View Article and Find Full Text PDF

Despite a worldwide decline in maternal mortality over the past two decades, a significant gap persists between low- and high-income countries, with 94% of maternal mortality concentrated in low and middle-income nations. Ultrasound serves as a prevalent diagnostic tool in prenatal care for monitoring fetal growth and development. Nevertheless, acquiring standard fetal ultrasound planes with accurate anatomical structures proves challenging and time-intensive, even for skilled sonographers.

View Article and Find Full Text PDF

Intelligent health monitoring systems are becoming more important and popular as technology advances. Nowadays, online services are replacing physical infrastructure in several domains including medical services as well. The COVID-19 pandemic has also changed the way medical services are delivered.

View Article and Find Full Text PDF

Predicting attacks in Android malware devices using machine learning for recommender systems-based IoT can be a challenging task. However, it is possible to use various machine-learning techniques to achieve this goal. An internet-based framework is used to predict and recommend Android malware on IoT devices.

View Article and Find Full Text PDF

Federated learning (FL) is receiving much attention in the Healthcare Internet of Things (H-IoT) to support various instantaneous E-health services. Today, the deployment of FL suffers from several challenges, such as high training latency and data privacy leakage risks, especially for resource-constrained medical devices. In this article, we develop a three-layer FL architecture to decrease training latency by introducing split learning into FL.

View Article and Find Full Text PDF

The Vehicular ad-Hoc Network (VANET) is envisioned to ensure wireless transmission with ultra-high reliability. In the presence of fading and mobility of vehicles, error-free information between Vehicle to Vehicle (V2V) and Vehicle to Infrastructure (V2I) requires extensive investigation. The current literature lacks in designing an ultra-reliable comprehensive tractable model for VANET using millimeter wave.

View Article and Find Full Text PDF

The emergence of the Internet of Things (IoT) technology has brought about tremendous possibilities, but at the same time, it has opened up new vulnerabilities and attack vectors that could compromise the confidentiality, integrity, and availability of connected systems. Developing a secure IoT ecosystem is a daunting challenge that requires a systematic and holistic approach to identify and mitigate potential security threats. Cybersecurity research considerations play a critical role in this regard, as they provide the foundation for designing and implementing security measures that can address emerging risks.

View Article and Find Full Text PDF

All witnessed the terrible effects of the COVID-19 pandemic on the health and work lives of the population across the world. It is hard to diagnose all infected people in real time since the conventional medical diagnosis of COVID-19 patients takes a couple of days for accurate diagnosis results. In this paper, a novel learning framework is proposed for the early diagnosis of COVID-19 patients using hybrid deep fusion learning models.

View Article and Find Full Text PDF

As an important carrier of healthcare data, Electronic Medical Records (EMRs) generated from various sensors, i.e., wearable, implantable, are extremely valuable research materials for artificial intelligence and machine learning.

View Article and Find Full Text PDF

According to statistics, in the 185 countries' 36 types of cancer, the morbidity and mortality of lung cancer take the first place, and non-small cell lung cancer (NSCLC) accounts for 85% of lung cancer (International Agency for Research on Cancer, 2018), (Bray et al., 2018). Significantly in many developing countries, limited medical resources and excess population seriously affect the diagnosis and treatment of alung cancer patients.

View Article and Find Full Text PDF
Article Synopsis
  • Predictive health monitoring systems can identify potential health issues early, utilizing advanced deep learning techniques for medical image analysis.
  • The study focuses on fibrous dysplasia, a genetic condition that turns healthy bone cells into fibrous tissue, compromising bone integrity and potentially causing disabilities.
  • The research employs various image processing methods, including segmentation and edge detection, achieving high accuracy (99%) in detecting fibrous regions and significantly reducing segmentation errors over iterations.
View Article and Find Full Text PDF

Image memorability is a very hard problem in image processing due to its subjective nature. But due to the introduction of Deep Learning and the large availability of data and GPUs, great strides have been made in predicting the memorability of an image. In this paper, we propose a novel deep learning architecture called ResMem-Net that is a hybrid of LSTM and CNN that uses information from the hidden layers of the CNN to compute the memorability score of an image.

View Article and Find Full Text PDF

Patients with deaths from COVID-19 often have co-morbid cardiovascular disease. Real-time cardiovascular disease monitoring based on wearable medical devices may effectively reduce COVID-19 mortality rates. However, due to technical limitations, there are three main issues.

View Article and Find Full Text PDF

The Covid-19 pandemic has emerged as one of the most disquieting worldwide public health emergencies of the 21st century and has thrown into sharp relief, among other factors, the dire need for robust forecasting techniques for disease detection, alleviation as well as prevention. Forecasting has been one of the most powerful statistical methods employed the world over in various disciplines for detecting and analyzing trends and predicting future outcomes based on which timely and mitigating actions can be undertaken. To that end, several statistical methods and machine learning techniques have been harnessed depending upon the analysis desired and the availability of data.

View Article and Find Full Text PDF

Integration of artificial intelligence (AI) techniques in wireless infrastructure, real-time collection, and processing of end-user devices is now in high demand. It is now superlative to use AI to detect and predict pandemics of a colossal nature. The Coronavirus disease 2019 (COVID-19) pandemic, which originated in Wuhan China, has had disastrous effects on the global community and has overburdened advanced healthcare systems throughout the world.

View Article and Find Full Text PDF

With an increasing penetration of ubiquitous connectivity, the amount of data describing the actions of end-users has been increasing dramatically, both within the domain of the Internet of Things (IoT) and other smart devices. This has led to more awareness of users in terms of protecting personal data. Within the IoT, there is a growing number of peer-to-peer (P2P) transactions, increasing the exposure to security vulnerabilities, and the risk of cyberattacks.

View Article and Find Full Text PDF

The prevalence of smart devices in our day-to-day activities increases the potential threat to our secret information. To counter these threats like unauthorized access and misuse of phones, only authorized users should be able to access the device. Authentication mechanism provide a secure way to safeguard the physical resources as well the information that is processed.

View Article and Find Full Text PDF

RFID (Radio frequency identification) and wireless sensor networks are backbone technologies for pervasive environments. In integration of RFID and WSN, RFID data uses WSN protocols for multi-hop communications. Energy is a critical issue in WSNs; however, RFID data contains a lot of duplication.

View Article and Find Full Text PDF