Unlabelled: TARGET AND PURPOSE: Cancer and heart disease are hard maladies in human communities. To recognize these kinds of diseases in primary states can help for remission and decreasing the expenses. One of the best techniques for recognizing is imaging of the tissue.
View Article and Find Full Text PDFTumor and especially breast cancer is among the most common causes of death worldwide. Finding novel nanosized therapeutic compounds have important role to decrease the chance of death and increase the survival. Cancer cells are highly attractive to glucose [with a nanosize bimolecular structure 1nm] as an energy source more than normal cell and nanosized therapeutics due to possessing different pharmacokinetic and pharmacodynamic have advantageous over classical dosage forms in cancer therapy.
View Article and Find Full Text PDFAim: To determine the biodistribution properties of cleistanthin A and cleistanthin B in rodents using magnetic resonance imaging (MRI).
Materials And Methods: Cleistanthins A and B, constituents of Cleistanthus collinus Roxb., were labelled with gadolinium (Gd(3+)) directly and injected into normal and tumoric nude mice.
Metabolic imaging is commonly performed by nuclear medicine facilities such as PET or SPECT, etc. The production and biomedical applications of bio-molecular sensing in vivo MRI metabolic contrast agents has recently become of great universal research interest, which follows its great success as a potential cost effective, less radioactive, nuclear medicine alternative. Temperature, redox potential, enzyme activity, free radial/metal ion responsive and/or pH sensitive molecular metabolic MR contrast agents are among the famous instances exemplified, which basically promote MR image contrast enhancement ability to distinguish molecular metabolic/gene expression features.
View Article and Find Full Text PDFBackground: Difficulties in the use, preparation, and cost of radioactively-labeled glycosylated compounds led to this research and development study of a new gadolinium-labeled glucose compound that does not have a radioactive half-life or difficulties in its synthesis and utilization.
Methods: Based on the structure of the 2-fluoro-2-deoxy-D-glucose molecule ((18)FDG), a new compound consisting of D-glucose (1.1 nm) conjugated to a well-known chelator, diethylenetriamine penta-acetic acid (DTPA), was synthesized, labeled with Gd(3+), and examined in vitro and in vivo.
A substantial amount of evidence has proposed an important role for Cyclooxygenase-2 (COX-2) enzyme in brain diseases and affiliate disorders. The purpose of this research was studying the effects of COX-2 selective inhibition on haloperidol-induced catatonia in an animal model of drug overdose and Parkinson's disease (PD). In this study, the effect of acute and Sub-chronic oral administration of a new selective COX-2 inhibitor, i.
View Article and Find Full Text PDF