Publications by authors named "Ali Hussain Kazim"

Paper has attracted significant attention recently as a microfluidic component and platform, especially in passive pumping devices due to its porous and uniform absorbing nature. Many investigations on 1D and 2D fluid flows were carried out. However, no experimental work has been reported on the three-dimensional effect in porous geometry to improve pumping characteristics in microchannels.

View Article and Find Full Text PDF

Despite a number of efforts to evaluate the utility of water-diesel emulsions (WED) in CI engine to improve its performance and reduce its emissions in search of alternative fuels to combat the higher prices and depleting resources of fossil fuels, no consistent results are available. Additionally, the noise emissions in the case of WED are not thoroughly discussed which motivated this research to analyze the performance and emission characteristics of WED. Brake thermal efficiency (BTE) and brake specific fuel consumption (BSFC) were calculated at 1600 rpm within 15%-75% of the load range.

View Article and Find Full Text PDF

The electrohydrodynamic deformation of an emulsion droplet with a clean and particle-covered interface was explored. Here, the electrohydrodynamic deformation was numerically and experimentally demonstrated under the stimuli of moderate and strong electric fields. The numerical method involves the coupling of the Navier-Stokes equation with the level set equation of interface tracking and the governing equations of so-called leaky dielectric theory.

View Article and Find Full Text PDF

Compression ignition engines are one of the world's largest consumers of fossil oil but have energy extraction efficiency limited to 35%. Addition of hydrogen alongside diesel fuel has been found to improve engine performance and efficiency; however, after a certain limit, hydrogen begins to show adverse effects, mainly because the ratio of oxygen to fuel decreases. This can be overcome by using oxyhydrogen, which is a mixture of hydrogen and oxygen gas.

View Article and Find Full Text PDF