Publications by authors named "Ali Huizinga-Van der Vlag"

Intrarenal drug delivery from a hydrogel carrier implanted under the kidney capsule is an innovative way to induce kidney tissue regeneration and/or prevent kidney inflammation or fibrosis. We report here on the development of supramolecular hydrogels for this application. We have synthesized two types of supramolecular hydrogelators by connecting the hydrogen bonding moieties to poly(ethylene glycols) in two different ways in order to obtain hydrogels with different physico-chemical properties.

View Article and Find Full Text PDF

Maintenance of polarisation of epithelial cells and preservation of their specialized phenotype are great challenges for bioengineering of epithelial tissues. Mimicking the basement membrane and underlying extracellular matrix (ECM) with respect to its hierarchical fiber-like morphology and display of bioactive signals is prerequisite for optimal epithelial cell function in vitro. We report here on a bottom-up approach based on hydrogen-bonded supramolecular polymers and ECM-peptides to make an electro-spun, bioactive supramolecular mesh which can be applied as synthetic basement membrane.

View Article and Find Full Text PDF

A bioartificial kidney, which is composed of a membrane cartridge with renal epithelial cells, can substitute important kidney functions in patients with renal failure. A particular challenge is the maintenance of monolayer integrity and specialized renal epithelial cell functions ex vivo. We hypothesized that this can be improved by electro-spun, supramolecular polymer membranes which show clear benefits in ease of processability.

View Article and Find Full Text PDF

Gut-derived lipopolysaccharide (LPS) plays a role in the pathogenesis of liver diseases like fibrosis. The enzyme alkaline phosphatase (AP) is present in, among others, the intestinal wall and liver and has been previously shown to dephosphorylate LPS. Therefore, we investigated the effect of LPS on hepatic AP expression and the effect of AP on LPS-induced hepatocyte responses.

View Article and Find Full Text PDF

Alkaline phosphatase (AP) is a phosphate transferase present in bacteria and eukaryotes. In previous studies, we have shown that AP is able to dephosphorylate lipopolysaccharide (LPS) at physiological pH levels. Because LPS is the causative agent of gram-negative sepsis, we hypothesize that AP might be used as a medication during early stages of LPS-induced septic shock.

View Article and Find Full Text PDF

Lipopolysaccharide (LPS) may cause sepsis when it enters the blood circulation. The toxic moiety of LPS is the well-preserved lipid A part. Lipid A contains two phosphate groups attached to diglucosamine, which are crucial for the many biological activities of LPS.

View Article and Find Full Text PDF