A new rotational coherent anti-Stokes Raman spectroscopy (RCARS) concept based on interferometric quantum control (IQC) is demonstrated. Two wavepackets originating from pure rotational states are created by a femtosecond stimulated rotational Raman interaction. The two Raman responses are instantly probed by a single-mode ns pulse generating two interfering RCARS polarizations.
View Article and Find Full Text PDFAllantoin is a good source of ammonium for many organisms, and in Escherichia coli it is utilized under anaerobic conditions. We provide evidence that allantoinase (AllB) is allosterically activated by direct binding of the allantoin catabolic enzyme, glycerate 2-kinase (GlxK) in the presence of glyoxylate. Glyoxylate is known to be an effector of the AllR repressor which regulates the allantoin utilization operons in E.
View Article and Find Full Text PDFWe present a novel method, to our knowledge, to control the shape of the spectra using 2-beam hybrid femtosecond (fs)/nanosecond (ns) coherent anti-Stokes Raman scattering (RCARS). The method is demonstrated experimentally and theoretically by utilizing a species-selective excitation approach via a field-free molecular alignment as an illustrative example. Two non-resonant fs laser pulses with proper delay selectively create and then annihilate N resonances in a binary mixture with O molecules.
View Article and Find Full Text PDFBacterial transcription factors (TFs) are widely studied in Escherichia coli. Yet it remains unclear how individual genes in the underlying pathways of TF machinery operate together during environmental challenge. Here, we address this by applying an unbiased, quantitative synthetic genetic interaction (GI) approach to measure pairwise GIs among all TF genes in E.
View Article and Find Full Text PDFMethods Mol Biol
January 2022
Escherichia coli synthetic genetic array (eSGA) screening procedure enables high-throughput systematic mapping of pairwise genetic interactions in E. coli. The eSGA method exploits E.
View Article and Find Full Text PDFLaser-induced grating spectroscopy (LIGS) is for the first time explored in a configuration based on the crossing of two focused femtosecond (fs) laser pulses (800-nm wavelength) and a focused continuous-wave (cw) laser beam (532-nm wavelength). A thermal grating was formed by multi-photon absorption of the fs-laser pulses by [Formula: see text] with a pulse energy around 700 [Formula: see text]J ([Formula: see text] 45 TW/[Formula: see text]). The feasibility of this LIGS configuration was investigated for thermometry in heated nitrogen gas flows.
View Article and Find Full Text PDFYhcB, a poorly understood protein conserved across gamma-proteobacteria, contains a domain of unknown function (DUF1043) and an N-terminal transmembrane domain. Here, we used an integrated approach including X-ray crystallography, genetics, and molecular biology to investigate the function and structure of YhcB. The Escherichia coli yhcB KO strain does not grow at 45 °C and is hypersensitive to cell wall-acting antibiotics, even in the stationary phase.
View Article and Find Full Text PDFAntimicrobial peptides (AMPs) are key effectors of the innate immune system and promising therapeutic agents. Yet, knowledge on how to design AMPs with minimal cross-resistance to human host-defense peptides remains limited. Here, we systematically assess the resistance determinants of Escherichia coli against 15 different AMPs using chemical-genetics and compare to the cross-resistance spectra of laboratory-evolved AMP-resistant strains.
View Article and Find Full Text PDFMotivation: A digenic genetic interaction (GI) is observed when mutations in two genes within the same organism yield a phenotype that is different from the expected, given each mutation's individual effects. While multiplicative scoring is widely applied to define GIs, revealing underlying gene functions, it remains unclear if it is the most suitable choice for scoring GIs in Escherichia coli. Here, we assess many different definitions, including the multiplicative model, for mapping functional links between genes and pathways in E.
View Article and Find Full Text PDFFolate derivatives are important cofactors for enzymes in several metabolic processes. Folate-related inhibition and resistance mechanisms in bacteria are potential targets for antimicrobial therapies and therefore a significant focus of current research. Here, we report that the activity of poly-γ-glutamyl tetrahydrofolate/dihydrofolate synthase (FolC) is regulated by glutamate/glutamine-sensing uridylyltransferase (GlnD), THF-dependent tRNA modification enzyme (MnmE), and UDP-glucose dehydrogenase (Ugd) as shown by direct protein-protein interactions.
View Article and Find Full Text PDFA robust and relatively compact calibration-free thermometric technique using diode lasers two-line atomic fluorescence (TLAF) for reactive flows at atmospheric pressures is investigated. TLAF temperature measurements were conducted using indium and, for the first time, gallium atoms as temperature markers. The temperature was measured in a multi-jet burner running methane/air flames providing variable temperatures ranging from 1600 to 2000 K.
View Article and Find Full Text PDFWe report an innovative approach for time-domain measurements of S-branch Raman linewidths using hybrid picosecond/nanosecond pure-rotational coherent anti-Stokes Raman spectroscopy (RCARS). The Raman coherences are created by two picosecond excitation pulses and are probed using a narrow-band nanosecond pulse at 532 nm. The generated RCARS signal contains the entire coherence decay in a single pulse.
View Article and Find Full Text PDFWe have compared the absorption in InP core-shell nanowire p-i-n junctions in lateral and vertical orientation. Arrays of vertical core-shell nanowires with 400 nm pitch and 280 nm diameter, as well as corresponding lateral single core-shell nanowires, were configured as photovoltaic devices. The photovoltaic characteristics of the samples, measured under 1 sun illumination, showed a higher absorption in lateral single nanowires compared to that in individual vertical nanowires, arranged in arrays with 400 nm pitch.
View Article and Find Full Text PDF