A wide range of high-Z nanomaterials are fabricated to decrease radiation dose by sensitizing cells to irradiation through various mechanisms such as ROS generation enhancement. Alginate-coated silver sulfide nanoparticles (AgS@Alg) were synthesized and characterized by SEM, TEM, DLS, XRD, EPS, FT-IR, and UV-vis analysis techniques. Cytotoxicity of nanoparticles was tested against HFF-2, MCF-7, and 4 T1 cell lines for biocompatibility and radio enhancement ability evaluation, respectively.
View Article and Find Full Text PDFAn optimal radiosensitizer with improved tumor retention has an important effect on tumor radiation therapy. Herein, gold nanoparticles (Au NPs) and drug-containing, mPEG-conjugated CUR (mPEG-CUR), self-assembled NPs (mPEG-CUR@Au) are developed and evaluated as a drug carrier and radiosensitizer in a breast cancer mice model. As a result, cancer therapy efficacy is improved significantly by applying all-in-one NPs to achieve synchronous chemoradiotherapy, as evidenced by studies evaluating cell viability, proliferation, and ROS production.
View Article and Find Full Text PDF