Publications by authors named "Ali H Shah"

Background: Azithromycin has been adopted as a component of the COVID-19 management protocol throughout the global healthcare settings but with a questionable if not downright unsubstantiated evidence base.

Objectives: In order to amalgamate and critically appraise the conflicting evidence around the clinical efficacy of Azithromycin (AZO) vis a vis COVID-19 management outcomes, a meta-analysis of meta-analyses was carried out to establish an evidence-based holistic status of AZO vis a vis its efficacy as a component-in-use of the COVID-19 management protocol.

Methods: A comprehensive systematic search was carried out through PubMed/Medline, Cochrane and Epistemonikos with a subsequent appraisal of abstracts and full-texts, as required.

View Article and Find Full Text PDF

The risk assessment of trace elements has received substantial attention for the achievement of UN Sustainable Developmental Goals (UN-SDGs). The present study aimed to evaluate health and ecological risks associated with trace element accumulation in Brassica oleracea under wastewater irrigations from three different areas. This study, for the first time, compared the pros and cons of mixed water crop irrigation (wastewater with fresh/groundwater).

View Article and Find Full Text PDF

Freshwater shortage and its contamination with various types of pollutants are becoming the most alarming issues worldwide due to impacts on socioeconomic values. Considering an increasing freshwater scarcity, it is imperative for the growers, particularly in semiarid and arid areas, to use wastewater for crop production. Wastewaters generally contain numerous essential inorganic and organic nutrients which are considered necessary for plant metabolism.

View Article and Find Full Text PDF

The presence of toxic substances in aquifers, particularly potentially toxic heavy metals, is an important environmental and social concern worldwide. These heavy metals are capable to exert many injurious health effects in human beings by intake of drinking metal-contaminated water. However, very little attention is paid towards quantitative and qualitative analysis of groundwater used for drinking purpose in several less-developed countries.

View Article and Find Full Text PDF

Nowadays, the use of wastewater for crop irrigation is increasing at global scale mainly due to freshwater scarcity and economic benefits. However, the presence of different types of pollutants including the trace elements (TEs) poses a serious threat to environmental and human health. This pot study evaluated the effect of alone and mixed irrigation water [wastewater (WW) with canal water (CW) and tube-well water (TW)] on TEs build-up in the soil, their soil-plant transfer and allied health hazards in District Vehari.

View Article and Find Full Text PDF

In peri-urban areas of district Vehari, farmers are using untreated city wastewater for crop irrigation owing to the scarcity of good-quality irrigation water. This practice may pose severe environmental and health issues to local inhabitants attributed to the high levels of potentially toxic metals in wastewater. The present study evaluated the potential impacts of wastewater irrigation on metals (Cd, Cr, Cu, Fe, Ni, Mn, Pb and Zn) build-up in the soil-plant continuum and associated health risks.

View Article and Find Full Text PDF

Arsenic (As) is a highly toxic and carcinogenic element. It has received considerable consideration worldwide in recent years due to its highest toxicity to human, and currently, high concentrations observed in the groundwater. Some recent media and research reports also highlighted possible As contamination of groundwater systems in Pakistan.

View Article and Find Full Text PDF

Population densities and freshwater resources are not evenly distributed worldwide. This has forced farmers to use wastewater for the irrigation of food crops. This practice presents both positive and negative effects with respect to agricultural use, as well as in the context of environmental contamination and toxicology.

View Article and Find Full Text PDF

CD4+CD25+ T regulatory (T(reg)) cells were initially described for their ability to suppress autoimmune diseases in animal models. An emerging interest is the potential role of T(reg) cells in cancer development and progression because they have been shown to suppress antitumor immunity. In this study, CD4+CD25- T cells cultured in conditioned medium (CM) derived from tumor cells, RENCA or TRAMP-C2, possess similar characteristics as those of naturally occurring T(reg) cells, including expression of Foxp3, a crucial transcription factor of T(reg) cells, production of low levels of IL-2, high levels of IL-10 and TGF-beta, and the ability to suppress CD4+CD25- T cell proliferation.

View Article and Find Full Text PDF

Transforming growth factor B (TGF-beta) is a potent immunosuppressive cytokine that is frequently associated with mechanisms of tumor escape from immunosurveillance. We report that transplantation of murine bone marrow (BM) expressing a dominant-negative TGF-beta type II receptor (TbetaRIIDN) leads to the generation of mature leukocytes capable of a potent antitumor response in vivo. Hematopoietic precursors in murine BM from donor mice were rendered insensitive to TGF-beta via retroviral expression of the TbetaRIIDN construct and were transplanted in C57BL/6 mice before tumor challenge.

View Article and Find Full Text PDF

TGF-beta regulation of immune homeostasis has been investigated in the context of cytokine knockout (TGF-beta null) mice, in which particular TGF-beta isoforms are disrupted throughout the entire organism, as well as in B and T cell-specific transgenic models, but to date the immunoregulatory effects of TGF-beta have not been addressed in the context of an in vivo mouse model in which multi-isoform TGF-beta signaling is abrogated in multiple leukocyte lineages while leaving nonhemopoietic tissue unaffected. Here we report the development of a murine model of TGF-beta insensitivity limited to the hemopoietic tissue of adult wild-type C57BL/6 mice based on retroviral-mediated gene transfer of a dominant negative TGF-beta type II receptor targeting murine bone marrow. Unlike the lymphoproliferative syndrome observed in TGF-beta1-deficient mice, the disruption of TGF-beta signaling in bone marrow-derived cells leads to dramatic expansion of myeloid cells, primarily monocytes/macrophages, and is associated with cachexia and mortality in lethally irradiated mice reconstituted with dominant negative receptor-transduced bone marrow.

View Article and Find Full Text PDF