The quality of life is negatively impacted by chronic wounds for more than 25 million people in the US. They are quite prone to infection, which may lead to the eventual loss of a limb. By exposing the ulcers to treatment agents at the appropriate time, the healing rate is increased.
View Article and Find Full Text PDFThis study aimed to evaluate the effect of nanoparticles based on the PLGA and biomolecule of lycopene (i.e. NLcp) and exosomes loaded on hydroxyapatite/collagen-based scaffolds (HA/Coll), on human endometrial MSCs (hEnMSCs) differentiation into osteoblast cells.
View Article and Find Full Text PDFGelatin-methacryloyl (GelMA) is a highly adaptable biomaterial extensively utilized in skin regeneration applications. However, it is frequently imperative to enhance its physical and biological qualities by including supplementary substances in its composition. The purpose of this study was to fabricate and characterize a bi-layered GelMA-gelatin scaffold using 3D bioprinting.
View Article and Find Full Text PDFBackground: Based on recent advances in tissue engineering and stem cell therapy in nervous system diseases treatments, this study aimed to investigate sciatic nerve regeneration using human endometrial stem cells (hEnSCs) encapsulated fibrin gel containing chitosan nanoparticle loaded by insulin (Ins-CPs). Stem cells and also Insulin (Ins), which is a strong signaling molecule in peripheral nerve regeneration, play an important role in neural tissue engineering.
Methods: The fibrin hydrogel scaffold containing insulin loaded chitosan particles was synthesized and characterized.
Polymer-based composite scaffolds are an attractive class of biomaterials due to their suitable physical and mechanical performance as well as appropriate biological properties. When such composites contain osteoinductive ceramic nanopowders, it is possible, in principle, to stimulate the seeded cells to differentiate into osteoblasts. However, reproducibly fabricating and developing an appropriate niche for cells' activities in three-dimensional (3D) scaffolds remains a challenge using conventional fabrication techniques.
View Article and Find Full Text PDFBackground: Tissue engineering (TE) is the main approach for stimulating the body's mechanisms to regenerate damaged or diseased organs. Bone and cartilage tissues due to high susceptibility to trauma, tumors, and age-related disease exposures are often need for reconstruction. Investigation on the development and applications of the novel biomaterials and methods in bone tissue engineering (BTE) is of great importance to meet emerging today's life requirements.
View Article and Find Full Text PDFThe ultimate goal of regenerative medicine is to repair, regenerate, or reconstruct functional loss in failed tissues and/or organs. Although regenerative medicine is a relatively new field, multiple diverse research groups are helping regenerative medicine reach its objectives. All endeavors in this field go through in silico, in vitro, in vivo, and clinical trials which are prerequisites to translating such approaches from the bench to the bedside.
View Article and Find Full Text PDFBioengineering of tissues and organs has the potential to generate functional replacement organs. However, achieving the full-thickness vascularization that is required for long-term survival of living implants has remained a grand challenge, especially for clinically sized implants. During the pre-vascular phase, implanted engineered tissues are forced to metabolically rely on the diffusion of nutrients from adjacent host-tissue, which for larger living implants results in anoxia, cell death, and ultimately implant failure.
View Article and Find Full Text PDFMicroneedle arrays (MNAs) have been used for decades to deliver drugs transdermally and avoid the obstacles of other delivery routes. Hydrogels are another popular method for delivering therapeutics because they provide tunable, controlled release of their encapsulated payload. However, hydrogels are not strong or stiff, and cannot be formed into constructs that penetrate the skin.
View Article and Find Full Text PDFThe principal purpose of tissue engineering is to stimulate the injured or unhealthy tissues to revive their primary function through the simultaneous use of chemical agents, cells, and biocompatible materials. Still, choosing the appropriate protein as a growth factor (GF) for tissue engineering is vital to fabricate artificial tissues and accelerate the regeneration procedure. In this study, the angiogenesis and osteogenesis-related proteins' interactions are studied using their related network.
View Article and Find Full Text PDFThe human amniotic membrane (HAM) has been viewed as a potential regenerative material for a wide variety of injured tissues because of its collagen-rich content. High degradability of HAM limits its wide practical application in bone tissue engineering. In this study, the natural matrix of the decellularized amniotic membrane was developed by the double diffusion method.
View Article and Find Full Text PDFMany studies have been devoted to investigating the potential of guided bone regeneration (GBR) membranes for bone defect reconstruction. Regardless of approaches for treating damaged bone tissues, a beneficial therapeutic strategy has remained a challenge. In this study, a novel GBR membrane with polycaprolactone (PCL) and poly(vinyl alcohol) (PVA) containing different concentrations of metformin (Met) for improving osteogenic properties was developed.
View Article and Find Full Text PDFJ Biomed Mater Res B Appl Biomater
October 2020
In the current study, electrospun poly(ε-caprolactone)-gelatin (PCL-Gel) fibrous scaffolds containing magnesium oxide (MgO) particles and preseeded with human endometrial stem cells (hEnSCs) were developed to use as wound care material in skin tissue engineering applications. Electrospun fibers were fabricated using PCL-Gel (1:1 [wt/wt]) with different concentrations of MgO particles (1, 2, and 4 wt%). The fibrous scaffolds were evaluated regarding their microstructure, mechanical properties, surface wettability, and in vitro and in vivo performances.
View Article and Find Full Text PDFThere is urgency for the development of nanomaterials that can meet emerging biomedical needs. Magnetic nanoparticles (MNPs) offer high magnetic moments and surface-area-to-volume ratios that make them attractive for hyperthermia therapy of cancer and targeted drug delivery. Additionally, they can function as contrast agents for magnetic resonance imaging (MRI) and can improve the sensitivity of biosensors and diagnostic tools.
View Article and Find Full Text PDFMater Sci Eng C Mater Biol Appl
December 2019
In the present study, a two-step sintering (TSS) method has been used to improve the mechanical properties, biocompatibility, drug release, and osteogenesis abilities of hardystonite (HT) ceramic scaffolds for tissue engineering and drug delivery applications. The average particle size of HT scaffold is kept lower than 80 nm and is reached higher than 130 nm by using two-step and conventional sintering methods, respectively. The compressive strengths of the prepared nanocrystalline HT scaffolds were found to be significantly higher than those of the micro-structure HT and currently available hydroxyapatite scaffolds.
View Article and Find Full Text PDFMater Sci Eng C Mater Biol Appl
December 2019
Removing malignant bone tumors results in critical size bone defects. These voids in bones should be filled by a proper scaffold that not only can support cell ingrowth and bone regeneration but also it has to show a desirable ability in long-term releasing anticancer drugs in order to prevent the growth of remaining cancer cells. Applying this scaffold can significantly improve the outcome of bone tumors treatment.
View Article and Find Full Text PDFHyperthermia-increasing temperature of cancerous tissue for a short period of time-is considered as an effective treatment for various cancer types such as malignant bone tumors. Superparamagnetic and ferromagnetic particles have been studied for their hyperthermic properties in treating various types of cancers. The activation of magnetic nanoparticles by an alternating magnetic field is currently being explored as a technique for targeted therapeutic heating of different tumors and is being studied as an adjuvant to conventional chemotherapy and radiation therapy.
View Article and Find Full Text PDFMicrovascular anastomosis is a common part of many reconstructive and transplant surgical procedures. While venous anastomosis can be achieved using microvascular anastomotic coupling devices, surgical suturing is the main method for arterial anastomosis. Suture-based microanastomosis is time-consuming and challenging.
View Article and Find Full Text PDFMater Sci Eng C Mater Biol Appl
January 2017
Hyperthermia and local drug delivery have been proposed as potential therapeutic approaches for killing cancer cells. The development of bioactive materials such as Hardystonite (HT) with magnetic and drug delivery properties can potentially meet this target. This new class of magnetic bioceramic can replace the widely used magnetic iron oxide nanoparticles, whose long-term biocompatibility is not clear.
View Article and Find Full Text PDF