Introduction: Exosomes (EXOs) as a targeted cell-free therapy could offer a new therapeutic strategy for immune-mediated inflammatory diseases, due to their stability and ease of storage and handling. This study focused on exosomes derived from stem cells of human exfoliated deciduous teeth (SHED-MSC-EXOs) and their role in managing the balance of immunoregulatory macromolecules that play a role in the underlying immunoregulatory mechanisms in THP-1-derived M0/M1 macrophage cells.
Methods: Flow cytometry confirmed the expression of CD14, CD68, CD80, and CD86 markers in these macrophages.
In this study, a thorough examination of the chemical, thermal, and mechanical characteristics, as well as shape memory behavior at low temperatures, of blends consisting of polylactic acid (PLA) and polyurethane (TPU) is conducted. The research involves the preparation of PLA/TPU mixtures with varying concentrations of TPU using a high-speed thermo-kinetic mixing approach. Chemical, morphological, and thermal analyses were conducted on pure PLA, TPU, and PLA/TPU mixtures by using Fourier Transform Infrared (FTIR), X-ray diffraction pattern spectroscopy (XRD), scanning electron microscopy (SEM), thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), and dynamic mechanical analysis (DMA).
View Article and Find Full Text PDFObjectives: One of the most promising adjuncts for screening breast cancer is ultrasound (US) radio-frequency (RF) time series. It has the superiority of not requiring any supplementary equipment over other methods. This research aimed to propound a machine learning (ML) approach for automatically classifying benign, probably benign, suspicious, and malignant breast lesions based on the features extracted from the accumulated US RF time series.
View Article and Find Full Text PDFObjective: Radio Frequency Time Series (RF TS) is a cutting-edge ultrasound approach in tissue typing. The RF TS does not provide dynamic insights into the propagation medium; when the tissue and probe are fixed. We previously proposed the innovative RFTSDP method in which the RF data are recorded while stimulating the tissue.
View Article and Find Full Text PDFMuscle synergies have been hypothesized as specific predefined motor primitives that the central nervous system can reduce the complexity of motor control by using them, but how these are expressed in brain activity is ambiguous yet. The main purpose of this paper is to develop synergy-based neural decoding of motor primitives, so for the first time, brain activity and muscle synergy map of the upper extremity was investigated in the activity of daily living movements. To find the relationship between brain activities and muscle synergies, electroencephalogram (EEG) and electromyogram (EMG) signals were acquired simultaneously during activities of daily living.
View Article and Find Full Text PDFThe demand for biomimetic and biocompatible scaffolds in equivalence of structure and material composition for the regeneration of bone tissue is relevantly high. This article is investigating a novel three-dimensional (3D) printed porous structure called bone bricks with a gradient pore size mimicking the structure of the bone tissue. Poly-ɛ-caprolactone (PCL) combined with ceramics such as hydroxyapatite (HA), β-tricalcium phosphate (TCP), and bioglass 45S5 were successfully mixed using a melt blending method and fabricated with the use of screw-assisted extrusion-based additive manufacturing system.
View Article and Find Full Text PDFObjective: The inhibition of M1 macrophages may be interesting for targeted therapy with mesenchymal stem cell-derived Exosomes (MSC-EXOs). This study aimed to investigate the stem cells of human exfoliated deciduous teeth-derived EXOs (SHED-MSC-EXOs) effect on regulating the pro- and anti-oxidant indexes and inhibiting M1 macrophage polarization. Besides, an in-silico analysis of SHED-MSC-EXO miRNAs as the highest frequency of small RNAs in the exosomes was performed to discover the possible mechanism.
View Article and Find Full Text PDFIntroduction: The electroencephalography signal is well suited to calculate brain connectivity due to its high temporal resolution. When the purpose is to compute connectivity from multi-trial electroencephalography (EEG) data, confusion arises about how these trials involved in calculating the connectivity. The purpose of this paper is to study this confusing issue using simulated and experimental data.
View Article and Find Full Text PDFRhabdomyosarcoma is a rare cancer arising in skeletal muscle that typically impacts children and young adults. It is a worldwide challenge in child health as treatment outcomes for metastatic and recurrent disease still pose a major concern for both basic and clinical scientists. The treatment strategies for rhabdomyosarcoma include multi-agent chemotherapies after surgical resection with or without ionization radiotherapy.
View Article and Find Full Text PDFTreating critical-size bone defects with autografts, allografts, or standardized implants is challenging since the healing of the defect area necessitates patient-specific grafts with mechanically and physiologically relevant structures. Three-dimensional (3D) printing using computer-aided design (CAD) is a promising approach for bone tissue engineering applications by producing constructs with customized designs and biomechanical compositions. In this study, we propose 3D printing of personalized and implantable hybrid active scaffolds with a unique architecture and biomaterial composition for critical-size bone defects.
View Article and Find Full Text PDFFront Hum Neurosci
February 2023
Many visual attention models have been presented to obtain the saliency of a scene, i.e., the visually significant parts of a scene.
View Article and Find Full Text PDFThis research investigates the accelerated hydrolytic degradation process of both anatomically designed bone scaffolds with a pore size gradient and a rectangular shape (biomimetically designed scaffolds or bone bricks). The effect of material composition is investigated considering poly-ε-caprolactone (PCL) as the main scaffold material, reinforced with ceramics such as hydroxyapatite (HA), β-tricalcium phosphate (TCP) and bioglass at a concentration of 20 wt%. In the case of rectangular scaffolds, the effect of pore size (200 μm, 300 μm and 500 μm) is also investigated.
View Article and Find Full Text PDFJ Mech Behav Biomed Mater
October 2022
Bone defect treatment is still a challenge in clinics, and synthetic bone scaffolds with adequate mechanical and biological properties are highly needed. Adequate waste and nutrient exchange of the implanted scaffold with the surrounded tissue is a major concern. Moreover, the risk of mechanical instability in the defect area during regular activity increases as the defect size increases.
View Article and Find Full Text PDFMol Ther Oncolytics
September 2022
Glioblastoma multiforme (GBM) is the most invasive form of primary brain astrocytoma. Gene therapy using the herpes simplex virus thymidine kinase/ganciclovir (HSV-TK/GCV) is a new strategy for GBM treatment. As the connexin 43 (Cx43) levels are downregulated in GBM cells, it seems that the upregulation of Cx43 could improve the efficacy of the gene therapy.
View Article and Find Full Text PDFLarge bone loss injuries require high-performance scaffolds with an architecture and material composition resembling native bone. However, most bone scaffold studies focus on three-dimensional (3D) structures with simple rectangular or circular geometries and uniform pores, not able to recapitulate the geometric characteristics of the native tissue. This paper addresses this limitation by proposing novel anatomically designed scaffolds (bone bricks) with nonuniform pore dimensions (pore size gradients) designed based on new lay-dawn pattern strategies.
View Article and Find Full Text PDFThe design of scaffolds with optimal biomechanical properties for load-bearing applications is an important topic of research. Most studies have addressed this problem by focusing on the material composition and not on the coupled effect between the material composition and the scaffold architecture. Polymer-bioglass scaffolds have been investigated due to the excellent bioactivity properties of bioglass, which release ions that activate osteogenesis.
View Article and Find Full Text PDFIn this study, the acidity of urazole (pKa 5-6) was exploited to fabricate a hydrogel in two simple and scalable steps. Commercially available poly(hexamethylene)diisocyanate was used as a precursor to synthesize an urazole containing gel. The formation of urazole was confirmed by FT-IR and H-NMR spectroscopy.
View Article and Find Full Text PDFIn numerous activities, humans need to attend to multiple sources of visual information at the same time. Although several recent studies support the evidence of this ability, the mechanism of multi-item attentional processing is still a matter of debate and has not been investigated much by previous computational models. Here, we present a neuro-computational model aiming to address specifically the question of how subjects attend to two items that deviate defined by feature and location.
View Article and Find Full Text PDFBackground: Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) is currently the most important etiological agent of acute respiratory distress syndrome (ARDS) with millions of infections and deaths in the last 2 years worldwide. Several reasons and parameters are responsible for the difficult management of coronavirus disease-2019 (COVID-19) patients; the first is virus behavioral factors such as high transmission rate, and the different molecular and cellular mechanisms of pathogenesis remain a matter of controversy, which is another factor.
Summary: In the present review, we attempted to explain about features of SARS-COV-2, particularly focusing on the various aspects of pathogenesis and treatment strategies.
The material for bone scaffold replacement should be biocompatible and antibacterial to prevent scaffold-associated infection. We biofunctionalized the hydroxyapatite (HA) properties by doping it with lithium (Li). The HA and 4 Li-doped HA (0.
View Article and Find Full Text PDFBiomed Phys Eng Express
November 2020
Mitral Valve Prolapse (MVP) is a common condition among people, which is often benign and does not need any serious treatment. However, this doesn't mean that MVP can't cause any problems. In malignant conditions, MVP can cause mitral failure and also heart failure.
View Article and Find Full Text PDFDisabil Rehabil Assist Technol
October 2022
Objective: EEG-based motion trajectory decoding makes a promising approach for neurotechnology which can be used for neural control of motion reconstruction and neurorehabilitation tools. However, the feasibility and validity of continuous motion decoding by non-invasive brain activity are not clear. The main aim of this study was to perform a meta-analysis across studies that examined the ability of EEG-based continuous motion decoding of upper limb movements.
View Article and Find Full Text PDFAutism Spectrum Disorder (ASD) is a neurodevelopmental disorder in which changes in brain connectivity, associated with autistic-like traits in some individuals. First-degree relatives of children with autism may show mild deficits in social interaction. The present study investigates electroencephalography (EEG) brain connectivity patterns of the fathers who have children with autism while performing facial emotion labeling task.
View Article and Find Full Text PDFA growing area of research is focused on cancer therapy, and new therapeutic approaches are welcomed. Mesenchymal stem cell (MSC)-based gene therapy is a promising strategy in oncology. Intrinsic tropism and migration to tumor microenvironment with off lights are attractive features of this type of cell carrier.
View Article and Find Full Text PDF