Background: Although precision oncology has rapidly been developed in recent years, its real-world impact and challenges in healthcare implementation remain underexplored. Through a meta-analysis of real-world evidence (RWE), we aimed at investigating the applicability and clinical impact of comprehensive cancer genome profiling (CGP) in cancer patients with metastatic solid tumors.
Methods: We systematically searched Medline, Embase, and Web of Science for RWE studies on CGP and matched therapies in metastatic solid tumors (publication period: 2012-2023).
Immunotherapy with PD-1 or PD-L1 inhibitors has become an essential treatment strategy for a growing number of malignancies. These treatments have a risk for immune-related adverse events (IRAEs). Pooled analyses based on clinical trials show a favorable toxicity profile for treatment with PD-L1 compared to PD-1 inhibitors.
View Article and Find Full Text PDFIntroduction: Checkpoint inhibitors (CPI) are widely used in cancer treatment with a potential of causing immune-related adverse events (IRAEs). Several studies have reported a positive correlation between development of IRAEs and improved survival outcome. However, few studies have focused on the potential role of multiple IRAEs on treatment effectiveness.
View Article and Find Full Text PDFEnvironmental pollution is escalating due to rapid global development that often prioritizes human needs over planetary health. Despite global efforts to mitigate legacy pollutants, the continuous introduction of new substances remains a major threat to both people and the planet. In response, global initiatives are focusing on risk assessment and regulation of emerging contaminants, as demonstrated by the ongoing efforts to establish the UN's Intergovernmental Science-Policy Panel on Chemicals, Waste, and Pollution Prevention.
View Article and Find Full Text PDFUnlabelled: One strategy to reduce CO emissions from cement production is to reduce the amount of Portland cement produced by replacing it with supplementary cementitious materials (SCMs). Biochar is a potential SCM that is an eco-friendly and stable porous pyrolytic material. However, the effects of biochar addition on the performances of Portland cement composites are not fully understood.
View Article and Find Full Text PDFDacarbazine (DTIC) and its oral counterpart temozolomide (TMZ) have been the most used agents in advanced malignant melanoma (MM) patients and they are still used routinely. The preferred first line treatment, immune checkpoint inhibitors (CPIs) might shape the tumor and the tumor microenvironment, possibly affecting the response to subsequent therapies. The aim of this study was to investigate the treatment effect of DTIC/TMZ in MM patients after CPI therapy in a consecutive patient cohort and through systematic literature review and meta-analysis.
View Article and Find Full Text PDFBiochar can be used for multifunctional applications including the improvement of soil health and carbon storage, remediation of contaminated soil and water resources, mitigation of greenhouse gas emissions and odorous compounds, and feed supplementation to improve animal health. A healthy soil preserves microbial biodiversity that is effective in supressing plant pathogens and pests, recycling nutrients for plant growth, promoting positive symbiotic associations with plant roots, improving soil structure to supply water and nutrients, and ultimately enhancing soil productivity and plant growth. As a soil amendment, biochar assures soil biological health through different processes.
View Article and Find Full Text PDFMicroplastic (MP) pollution in agricultural soils, resulting from the use of plastic mulch, compost, and sewage sludge, jeopardizes the soil microbial populations. However, the effects of MPs on soil chemical properties and microbial communities remain largely unknown. Here, we investigated the effects of different concentration levels (0, 0.
View Article and Find Full Text PDFChromium (Cr) affects human health if it accumulates in organs to elevated concentrations. The toxicity risk of Cr in the ecosphere depends upon the dominant Cr species and their bioavailability in the lithosphere, hydrosphere, and biosphere. However, the soil-water-human nexus that controls the biogeochemical behaviour of Cr and its potential toxicity is not fully understood.
View Article and Find Full Text PDFMetabolomic and gut microbial responses of soil fauna to environmentally relevant concentrations of microplastics indicate the potential molecular toxicity of microplastics; however, limited data exist on these responses. In this study, earthworms (Eisenia fetida) were exposed to spherical (25-30 μm diameter) polystyrene microplastic-contaminated soil (0.02%, w:w) for 14 days.
View Article and Find Full Text PDFThe unpredictable climatic perturbations, the expanding industrial and mining sectors, excessive agrochemicals, greater reliance on wastewater usage in cultivation, and landfill leachates, are collectively causing land degradation and affecting cultivation, thereby reducing food production globally. Biochar can generally mitigate the unfavourable effects brought about by climatic perturbations (drought, waterlogging) and degraded soils to sustain crop production. It can also reduce the bioavailability and phytotoxicity of pollutants in contaminated soils via the immobilization of inorganic and/or organic contaminants, commonly through surface complexation, electrostatic attraction, ion exchange, adsorption, and co-precipitation.
View Article and Find Full Text PDFContamination of paddy soils with potentially toxic elements (PTEs) has become a severe environmental issue. Application of functionalized biochar for rice cultivation has been proposed as an effective means to reduce environmental risks of these PTEs in paddy soils. This work was undertaken to seek the positive effects of a rice husk-derived silicon (Si)-rich biochar (Si-BC) and a pig carcass-derived phosphorus (P)-rich biochar (P-BC), as well as their Fe-modified biochars (Fe-Si-BC and Fe-P-BC) on the enzyme activity and PTE availability in an As-Cd-Pb-contaminated soil.
View Article and Find Full Text PDFThe toxicity of nanoplastics (NPs) at relatively low concentrations to soil fauna at different organismal levels is poorly understood. We investigated the responses of earthworm (Eisenia fetida) to polystyrene NPs (90-110 nm) contaminated soil at a relatively low concentration (0.02 % w:w) based on multi-omics, morphological, and intestinal microorganism analyses.
View Article and Find Full Text PDFChromium (Cr) contamination in soil and water poses high toxicity risks to organisms and threatens food and water security worldwide. Biochar has emerged as a promising material for cleaning up Cr contamination owing to biochar's strong capacity to immobilize Cr. This paper synthesizes information on biochar modification for the efficient remediation of Cr contamination in soil and water, and critically reviews mechanisms of Cr adsorption on pristine and modified biochars.
View Article and Find Full Text PDFIdentifying biochemical aspects of the potentially toxic elements (PTEs) is of particular concern in mangrove ecosystems, Avicennia marina (Forssk.) Vierh., due to their importance as natural buffers in coastal areas.
View Article and Find Full Text PDFThallium is a highly poisonous heavy metal. Since Tl pollution control has been neglected worldwide until the present, countless Tl pollutants have been discharged into the environment, endangering the safety of drinking water, farmland soil, and food chain, and eventually posing a great threat to human health. However, the source, occurrence, pathway and fate of Tl in the environment remains understudied.
View Article and Find Full Text PDFThe development of manganese (Mn) oxides (MnOx) modified biochar (MnOBC) for the removal of pollutants from water has received significant attention. However, a comprehensive review focusing on the use of MnOBC for the removal of organic and inorganic pollutants from water is missing. Therefore, the preparation and characterization of MnOBC, and its capacity for the removal of inorganic (e.
View Article and Find Full Text PDFContamination of aquatic systems by antimony (Sb) is a worldwide issue due to its risks to eco-environment and human health. Batch sorption experiments were conducted to assess the equilibrium, kinetics and thermodynamics of antimonite [Sb(III)] sorption by pristine biochar (BC) and chitosan-loaded biochar (CHBC) derived from branches of Ficus microcarpa. Results showed the successful loading of chitosan onto biochar surface, exhibiting more functional groups (e.
View Article and Find Full Text PDFAntimony (Sb) is introduced into soils, sediments, and aquatic environments from various sources such as weathering of sulfide ores, leaching of mining wastes, and anthropogenic activities. High Sb concentrations are toxic to ecosystems and potentially to public health via the accumulation in food chain. Although Sb is poisonous and carcinogenic to humans, the exact mechanisms causing toxicity still remain unclear.
View Article and Find Full Text PDFExtensive mineral exploitation activities in history have aggravated potential toxic elements (PTEs) contamination in agricultural soils in China. Comprehensive ecological risk assessment is of great significance to orientate the restoration of contaminated soils, especially for those with high background values and multiple sources. The study area is located in the major rice producing area of China.
View Article and Find Full Text PDFPaddy soils in southern China are heavily co-polluted by arsenic (As) and cadmium (Cd). The accumulation of these contaminants in rice grains may pose a high health risk. We evaluated the impact of adjusted water management practice (i.
View Article and Find Full Text PDFNickel (Ni) is a potentially toxic element that contaminates soil and water, threatens food and water security, and hinders sustainable development globally. Biochar has emerged as a promising novel material for remediating Ni-contaminated environments. However, the potential for pristine and functionalized biochars to immobilize/adsorb Ni in soil and water, and the mechanisms involved have not been systematically reviewed.
View Article and Find Full Text PDFThe effect and mechanistic evidence of biochar on the (im)mobilization of potentially toxic elements (PTEs) in multi-contaminated soils, with respect to the role of surface-functional groups and organic/inorganic compounds of biochar, are poorly understood. Herein, biochars produced from grass residues, rice straw, and wood were applied to a mining-soil contaminated with As, Cd, Pb, and Zn for 473-d. Biochars did not reduce the mobilization of Cd and Zn, whereas they simultaneously exhibited disparate effects on As and Pb mobilization.
View Article and Find Full Text PDFBiochar is a promising immobilizing agent of trace elements (TEs) in contaminated soils. However, several contradictory results have been reported regarding the potential of biochar to immobilize arsenic (As), chromium (Cr), and nickel (Ni) in contaminated soils. We conducted a meta-analysis on the published papers since 2006 until 2019 to examine the effects of biochar on the chemical (im)mobilization of As, Cr, and Ni in contaminated soils and to elucidate the major factors that control their interactions with biochar in soil.
View Article and Find Full Text PDF