The subcellular behavior of several mineral elements was studied using modern techniques of observation like transmission electron microscopy and analysis like electron probe microanalysis and secondary ion mass spectrometry. In the present ultrastructural and analytical investigations, we undertake to compare the intracellular behavior of a heavy metal, gold, and a III-A group element, indium, on rat testicular tissues after their parenteral administrations. Our ultrastructural results showed that while gold was found only in the lysosomes of Leydig cells under electron dense needles, indium was observed as electron-dense deposits in the lysosomes of both Leydig and Sertoli cells.
View Article and Find Full Text PDFThe frequent use of some rare earths in the medical and industrial domains make us worry about their intracellular behavior into the body. Reason for which we have investigated the subcellular localization of one of these elements, the samarium, in the mammary gland of lactating female wistar rats using two very sensitive methods of observation and microanalysis, the transmission electron microscopy and the secondary ion mass spectrometry. The ultrastructural study showed the presence of electron dense deposits in the lactating mammary glandular epithelial cell lysosomes of the samarium-treated rats, but no loaded lysosomes were observed in those of control rats.
View Article and Find Full Text PDFThe subcellular behavior of aluminum and indium, used in medical and industrial fields, was studied in the gastric mucosa and the liver after their intragastric administration to rats, using, two of the most sensitive methods of observation and microanalysis, the transmission electron microscopy, and the secondary ion mass spectrometry. The ultrastructural study showed the presence of electron dense deposits, in the lysosomes of parietal and principal gastric mucosa cells but no loaded lysosomes were observed in the different studied hepatic territories. The microanalytical study allowed the identification of the chemical species present in those deposits as aluminum or indium isotopes and the cartography of their distribution.
View Article and Find Full Text PDFSeveral studies have demonstrated that In used in medicine has several impacts on organs like spleen and lungs after its systemic administration. In the present study, ultrastructural and microanalytical methods were used to investigate the impact of the presence of this element in the intestinal mucosa, the liver, the kidney and the testicle after its administration in two ways. After intraperitoneal administration, In was selectively concentrated in the lysosomes of hepatocytes, of tubular proximal convoluted cells and of Sertoli and Leydig cells.
View Article and Find Full Text PDFThe effects of parenteral injection of aluminum, indium, gadolinium, or terbium in rats have been previously studied in several organs such as the liver, the kidneys, etc., but never in mammary glands. In this work, we have attempted to study the subcellular localization of these elements after their intraperitoneal administration.
View Article and Find Full Text PDFThe behaviour of the intestinal mucosa and of the liver after an administration of a gadolinium salt has been studied in the Wistar rat using transmission electron microscopy, ion mass spectrometry, and electron probe microanalysis. Six hours after parenteral administration, gadolinium is concentrated with phosphorus in the lysosomes of hepatocytes and Küppfer cells. Six hours after its oral administration, gadolinium is detected in the duodenal enterocytes lysosomes, but never in those of the liver cells.
View Article and Find Full Text PDFThe frequent use of some trace elements such as gadolinium and terbium in medicine and modern industries make us worry about their behavior in the organism. In this work, we study the intracellular localization in the liver and in the intestinal mucosa of two rare earths, gadolinium and terbium, after intraperitoneal and intragastric administration. Three methods of observation and microanalysis were used: conventional transmission electron microscopy, secondary ion mass spectrometry, and electron probe microanalysis.
View Article and Find Full Text PDF