Dielectric interfaces are crucial to the behavior of charged membranes, from graphene to synthetic and biological lipid bilayers. Understanding electrolyte behavior near these interfaces remains a challenge, especially in the case of rough dielectric surfaces. A lack of analytical solutions consigns this problem to numerical treatments.
View Article and Find Full Text PDFLayered materials that perform mixed electron and ion transport are promising for energy harvesting, water desalination, and bioinspired functionalities. These functionalities depend on the interaction between ionic and electronic charges on the surface of materials. Here we investigate ion transport by an external electric field in an electrolyte solution confined in slit-like channels formed by two surfaces separated by distances that fit only a few water layers.
View Article and Find Full Text PDFLabel-free X-ray scattering from protein spherical nucleic acids (Pro-SNAs, consisting of protein cores densely functionalized with covalently bound DNA) was used to elucidate the enzymatic reaction pathway for the DNase I-induced degradation of DNA. Time-course small-angle X-ray scattering (SAXS) and gel electrophoresis reveal a two-state system with time-dependent populations of intact and fully degraded DNA in the Pro-SNAs. SAXS shows that in the fully degraded state, the DNA strands forming the outer shell of the Pro-SNA were completely digested.
View Article and Find Full Text PDF