Publications by authors named "Ali Dehghan-Manshadi"

Coexisting pulmonary aspergillosis and tuberculosis in a post-COVID-19 patient is rare. Here, we are going to report a case of combined pulmonary aspergillosis and tuberculosis in a 51-year-old female who was previously diagnosed with COVID-19 pneumonia. The patient was treated with voriconazole and anti-tuberculosis agents.

View Article and Find Full Text PDF

As a representative of the biodegradable iron (Fe)-manganese (Mn) alloys, Fe35Mn has been investigated as a promising biodegradable metal biomaterial for orthopedic applications. However, its slow degradation rate, though better than pure Fe, and poor bioactivity are concerns that retard its clinical applications. Akermanite (CaMgSiO, Ake) is a silicate-based bioceramic, showing desirable degradability and bioactivity for bone repair.

View Article and Find Full Text PDF

This work investigates the influence of Ag (1 wt%) on the mechanical properties, in vitro and in vivo corrosion, and biocompatibility of Fe-35Mn. The microstructure of Fe-35Mn-1Ag possesses a uniform dispersion of discrete silver particles. Slight improvements in compressive properties are attributed to enhanced density and low porosity volume.

View Article and Find Full Text PDF

Titanium-niobium (Ti-Nb) alloys have great potential for biomedical applications due to their superior biocompatibility and mechanical properties that match closely to human bone. Powder metallurgy is an ideal technology for efficient manufacture of titanium alloys to generate net-shape, intricately featured and porous components. This work reports on the effects of Nb concentrations on sintered Ti-xNb alloys with the aim to establish an optimal composition in respect to mechanical and biological performances.

View Article and Find Full Text PDF

The mechanical properties of titanium alloys produced by powder metallurgy (PM) are dependent on the amount of porosity within the fabricated component. The space between powder particles and the behaviour of alloying elements during sintering contribute to the formation of pores. Iron (Fe) is well known to be a cost-effective alloying element for titanium alloys which acts to stabilise the β-phase.

View Article and Find Full Text PDF

In this work, the role that manganese plays in determining the structure and performance of sintered biodegradable porous Fe-Mn alloys is described. Powder metallurgy processing was employed to produce a series of biodegradable porous Fe-Mn ( = 20, 30, and 35 wt %) alloys suitable for bone scaffold applications. Increasing manganese content increased the porosity volume in the sintered alloys and influenced the ensuing properties of the metal.

View Article and Find Full Text PDF

There is increasing demand for synthetic bone scaffolds for bone tissue engineering as they can counter issues such as potential harvesting morbidity and restrictions in donor sites which hamper autologous bone grafts and address the potential for disease transmission in the case of allografts. Due to their excellent biocompatibility, titanium scaffolds have great potential as bone graft substitutes as they mimic the structure and properties of human cancellous bone. Here we report on a new thermoset bio-polymer which can act as a binder for Direct Ink Writing (DIW) of titanium artificial bone scaffolds.

View Article and Find Full Text PDF

Biocompatible titanium scaffolds with up to 40% interconnected porosity were manufactured through the metal injection moulding process and the space holder technique. The mechanical properties of the manufactured scaffold showed a high level of compatibility with those of the cortical human bone. Sintering at 1250 °C produced scaffolds with 36% porosity and more than 90% interconnected pores, a compressive yield stress of 220 MPa and a Young's modulus of 7.

View Article and Find Full Text PDF

To optimize both the mechanical and biological properties of titanium for biomedical implants, a highly flexible powder metallurgy approach is proposed to generate porous scaffolds with graded porosities and pore sizes. Sugar pellets acting as space holders were compacted with titanium powder and then removed by dissolution in water before sintering. The morphology, pore structure, porosity and pore interconnectivity were observed by optical microscopy and SEM.

View Article and Find Full Text PDF

We describe a new fabrication strategy for production of porous titanium scaffolds for skeletal implants which provides a promising new approach to repair and remodel damaged bone tissue. The new strategy involves powder sintering of titanium powder, employing pharmaceutical sugar pellets as temporary space holders, to facilitate production of porous scaffolds with structures optimized for mechanical performance and osseointegration of implants. The spherical sugar pellets, with controlled size fractions and excellent biocompatibility, are easily removed by dissolution prior to sintering providing an ideal space holder material for controlled synthesis of titanium scaffolds with desired porosities and pore sizes.

View Article and Find Full Text PDF

Synthetic scaffolds are a highly promising new approach to replace both autografts and allografts to repair and remodel damaged bone tissue. Biocompatible porous titanium scaffold was manufactured through a powder metallurgy approach. Magnesium powder was used as space holder material which was compacted with titanium powder and removed during sintering.

View Article and Find Full Text PDF