Cardiorenal syndrome I (CRS-1) denotes a state in which acute kidney injury occurs in the setting of acute heart failure (AHF). Isoproterenol (Iso) administration is widly used as an AHF model by transiently inducing extreme tachycardia, hypotension, and myocyte apoptosis and/or necrosis. To gain potential insights into renal manifestations of CRS-1, mice were subjected to the Iso-AHF model (50 mg Iso/kg), followed by renal functional and renal cortical assessments over 4 hours Iso induced acute azotemia (doubling of BUN, plasma creatinine) and significantly reduced renal plasma flow (prolonged plasma para-amino-hippurate clearance).
View Article and Find Full Text PDFExperimental data suggest that iron sucrose (FeS) injection, used either alone or in combination with other prooxidants, can induce "renal preconditioning," in part by upregulating cytoprotective ferritin levels. However, the rapidity, degree, composition (heavy vs. light chain), and renal ferritin changes after FeS administration in humans remain to be defined.
View Article and Find Full Text PDFAm J Physiol Renal Physiol
November 2018
p21 is upregulated in renal tubules in response to acute kidney injury ( AKI). and localizes in the nucleus, where it induces cell cycle arrest (CCA). These events can mitigate early injury but can also facilitate the onset of the degenerative cell senescence/"aging" process.
View Article and Find Full Text PDFAm J Physiol Renal Physiol
September 2016
α1-Microglobulin (A1M) is a low-molecular-weight heme-binding antioxidant protein that is readily filtered by the glomerulus and reabsorbed by proximal tubules. Given these properties, recombinant A1M (rA1M) has been proposed as a renal antioxidant and therapeutic agent. However, little direct evidence to support this hypothesis exists.
View Article and Find Full Text PDFTissue preconditioning, whereby various short-term stressors initiate organ resistance to subsequent injury, is well recognized. However, clinical preconditioning of the kidney for protection against acute kidney injury (AKI) has not been established. Here we tested whether a pro-oxidant agent, iron sucrose, combined with a protoporphyrin (Sn protoporphyrin), can induce preconditioning and protect against acute renal failure.
View Article and Find Full Text PDFNephron Clin Pract
October 2015
Pyruvate is a key intermediary in both aerobic and anaerobic energy metabolisms. In addition, a burgeoning body of experimental literature indicates that it can also dramatically impact oxidant, proinflammatory, and cytoprotective pathways. In sum, these actions can confer protection against diverse forms of tissue damage.
View Article and Find Full Text PDFHepatic ischemic-reperfusion injury (HIRI) is considered a risk factor for clinical acute kidney injury (AKI). However, HIRI's impact on renal tubular cell homeostasis and subsequent injury responses remain ill-defined. To explore this issue, 30-45 min of partial HIRI was induced in CD-1 mice.
View Article and Find Full Text PDFAlpha-1-antitrypsin (AAT) is a hepatic stress protein with protease inhibitor activity. Recent evidence indicates that ischemic or toxic injury can evoke selective changes within kidney that resemble a hepatic phenotype. Hence, we tested the following: i) Does acute kidney injury (AKI) up-regulate the normally renal silent AAT gene? ii) Does rapid urinary AAT excretion result? And iii) Can AAT's anti-protease/anti-neutrophil elastase (NE) activity protect injured proximal tubule cells? CD-1 mice were subjected to ischemic or nephrotoxic (glycerol, maleate, cisplatin) AKI.
View Article and Find Full Text PDFPyruvate is a key intermediary in energy metabolism and can exert antioxidant and anti-inflammatory effects. However, the fate of pyruvate during AKI remains unknown. Here, we assessed renal cortical pyruvate and its major determinants (glycolysis, gluconeogenesis, pyruvate dehydrogenase [PDH], and H2O2 levels) in mice subjected to unilateral ischemia (15-60 minutes; 0-18 hours of vascular reflow) or glycerol-induced ARF.
View Article and Find Full Text PDFStudies of experimental acute kidney injury (AKI) are critically dependent on having precise methods for assessing the extent of tubular cell death. However, the most widely used techniques either provide indirect assessments (e.g.
View Article and Find Full Text PDFThis study assessed whether endothelin-1 (ET-1) helps mediate postischemic acute kidney injury (AKI) progression to chronic kidney disease (CKD). The impact(s) of potent ETA or ETB receptor-specific antagonists (Atrasentan and BQ-788, respectively) on disease progression were assessed 24 h or 2 weeks following 30 min of unilateral ischemia in CD-1 mice. Unilateral ischemia caused progressive renal ET-1 protein/mRNA increases with concomitant ETA, but not ETB, mRNA elevations.
View Article and Find Full Text PDFNephrol Dial Transplant
June 2013
Background: Recent experimental work suggests a paradox: although uremia evokes systemic toxicities, in the setting of AKI, it can induce intrarenal cytoprotective and anti-inflammatory effects. Whether these influences can attenuate post-ischemic kidney disease progression remains unknown.
Methods: To explore this possibility, male CD-1 mice were subjected to a 30-min unilateral (left) kidney ischemia model, previously shown to reduce renal mass by ∼50% over 2-3 weeks.
Am J Physiol Renal Physiol
November 2012
Hemopexin (Hpx) is a liver-generated acute phase reactant that binds and neutralizes prooxidant free heme. This study tested whether acute kidney injury (AKI) triggers renal Hpx accumulation, potentially impacting heme Fe-mediated tubular injury. Mice were subjected to glycerol, cisplatin, ischemia-reperfusion (I/R), or endotoxemic [lipopolysaccharide (LPS)] AKI.
View Article and Find Full Text PDFHaptoglobin (Hp) synthesis occurs almost exclusively in liver, and it is rapidly upregulated in response to stress. Because many of the pathways that initiate hepatic Hp synthesis are also operative during acute kidney injury (AKI), we tested whether AKI activates the renal cortical Hp gene. CD-1 mice were subjected to six diverse AKI models: ischemia-reperfusion, glycerol injection, cisplatin nephrotoxicity, myoglobinuria, endotoxemia, and bilateral ureteral obstruction.
View Article and Find Full Text PDFAKI induces upregulation of heme oxygenase 1 (HO-1), which exerts cytoprotective effects and modulates the renal response to injury, suggesting that a biomarker of intrarenal HO-1 activity may be useful. Because HO-1 largely localizes to the endoplasmic reticulum and has no known secretory pathway, it is unclear whether plasma or urinary levels of HO-1 reflect intrarenal HO-1 expression. We measured plasma and urinary levels of HO-1 by ELISA during the induction and/or maintenance phases of four mouse models of AKI: ischemia/reperfusion, glycerol-induced rhabdomyolysis, cisplatin nephrotoxicity, and bilateral ureteral obstruction.
View Article and Find Full Text PDFThere is an emerging concept in clinical nephrology that acute kidney injury (AKI) can initiate chronic kidney disease (CKD). However, potential mechanisms by which this may occur remain elusive. Hence, this study tested the hypotheses that 1) AKI triggers progressive activation of selected proinflammatory genes, 2) there is a relative failure of compensatory anti-inflammatory gene expression, 3) proinflammatory lipid accumulation occurs, 4) these changes correspond with "gene-activating" histone acetylation, and 5) in concert, progressive renal disease results.
View Article and Find Full Text PDFClin J Am Soc Nephrol
September 2011
Background And Objectives: Experimental acute kidney injury (AKI) activates the HMG-CoA reductase (HMGCR) gene, producing proximal tubule cholesterol loading. AKI also causes sloughing of proximal tubular cell debris into tubular lumina. This study tested whether these two processes culminate in increased urinary pellet cholesterol content, and whether the latter has potential AKI biomarker utility.
View Article and Find Full Text PDFAm J Physiol Renal Physiol
March 2011
This study evaluated the potential utility of albuminuria as a "biomarker" of acute kidney injury (AKI) and tested whether AKI induces renal expression of the normally silent albumin gene. Urine albumin concentrations were measured in mice with five different AKI models (maleate, ischemia-reperfusion, rhabdomyolysis, endotoxemia, ureteral obstruction). Albumin gene induction in renal cortex, and in antimycin A-injured cultured proximal tubular cells, was assessed (mRNA levels; RNA polymerase II binding to the albumin gene).
View Article and Find Full Text PDFAm J Physiol Renal Physiol
August 2010
Despite their prooxidant effects, ferric iron compounds are routinely administered to patients with renal disease to correct Fe deficiency. This study assessed relative degrees to which three clinically employed Fe formulations [Fe sucrose (FeS); Fe gluconate (FeG); ferumoxytol (FMX)] impact renal redox- sensitive signaling, cytotoxicity, and responses to superimposed stress [endotoxin; glycerol-induced acute renal failure (ARF)]. Cultured human proximal tubule (HK-2) cells, isolated proximal tubule segments (PTS), or mice were exposed to variable, but equal, amounts of FeS, FeG, or FMX.
View Article and Find Full Text PDFRhabdomyolysis (Fe)-induced acute renal failure (ARF) causes renal inflammation, and, with repetitive insults, progressive renal failure can result. To gain insights into these phenomena, we assessed the impact of a single episode of glycerol-induced rhabdomyolysis on proinflammatory/profibrotic [TNF-alpha, monocyte chemoattractant protein-1 (MCP-1), and transforming growth factor-beta1 (TGF-beta1)] gene expression and the time course of these changes. CD-1 mice were studied 1-7 days after glycerol injection.
View Article and Find Full Text PDFAm J Physiol Renal Physiol
October 2009
Inflammatory cytokines are evoked by acute kidney injury (AKI) and may contribute to evolving renal disease. However, the impact of AKI-induced uremia on proinflammatory (e.g.
View Article and Find Full Text PDFIschemic renal injury can produce chronic renal inflammation and fibrosis. This study tested whether ischemia-reperfusion (I/R) activates histone-modifying enzyme systems and alters histone expression at selected proinflammatory/profibrotic genes. CD-1 mice were subjected to 30 min of unilateral I/R.
View Article and Find Full Text PDFMany of the studies of acute renal injury have been conducted in young mice usually during their rapid growth phase; yet, the impact of age or growth stage on the degree of injury is unknown. To address this issue, we studied three forms of injury (endotoxemic-, glycerol-, and maleate-induced) in mice ranging in age from adolescence (3 weeks) to maturity (16 weeks). The severity of injury within each model significantly correlated with weight and age.
View Article and Find Full Text PDFAm J Physiol Renal Physiol
January 2008
Maleate injection causes dose-dependent injury in proximal tubular cells. This study sought to better define underlying pathogenic mechanisms and to test whether maleate toxicity recapitulates critical components of the hypoxic/ischemic renal injury cascade. CD-1 mice were injected with maleate or used as a source for proximal tubule segments (PTS) for in vitro studies.
View Article and Find Full Text PDFAm J Physiol Renal Physiol
October 2007
Gentamicin is a mainstay in treating gram-negative sepsis. However, it also may potentiate endotoxin (LPS)-driven plasma TNF-alpha increases. Because gentamicin accumulates in renal tubules, this study addressed whether gentamicin directly alters LPS-driven tubular cell TNF-alpha production.
View Article and Find Full Text PDF