Publications by authors named "Ali C Akyildiz"

In-stent restenosis represents a major cause of failure of percutaneous coronary intervention with drug-eluting stent implantation. Computational multiscale models have recently emerged as powerful tools for investigating the mechanobiological mechanisms underlying vascular adaptation processes during in-stent restenosis. However, to date, the interplay between intervention-induced inflammation, drug delivery and drug retention has been under-investigated.

View Article and Find Full Text PDF

Background And Aims: Atherosclerotic plaque onset and progression are known to be affected by local biomechanical factors. While the role of wall shear stress (WSS) has been studied, the impact of another biomechanical factor, namely mechanical wall stress (MWS), remains poorly understood. In this study, we investigated the association of MWS, independently and combined with WSS, towards atherosclerosis in coronary arteries.

View Article and Find Full Text PDF

Background: Optimal timing of pulmonary valve replacement (PVR) in Tetralogy of Fallot (TOF) patients remains challenging. Ventricular wall stress is considered to be an early marker of right ventricular (RV) dysfunction.

Objectives: To investigate the association of RV wall stresses and their change over time with functional parameters in TOF patients.

View Article and Find Full Text PDF

Rupture of the cap of an atherosclerotic plaque can lead to thrombotic cardiovascular events. It has been suggested, through computational models, that the presence of microcalcifications in the atherosclerotic cap can increase the risk of cap rupture. However, the experimental confirmation of this hypothesis is still lacking.

View Article and Find Full Text PDF

Atherosclerotic plaque rupture in carotid arteries is a major cause of cerebrovascular events. Plaque rupture is the mechanical failure of the heterogeneous fibrous plaque tissue. Local characterization of the tissue's failure properties and the collagen architecture are of great importance to have insights in plaque rupture for clinical event prevention.

View Article and Find Full Text PDF

Endovascular thrombectomy procedures are significantly influenced by the mechanical response of thrombi to the multi-axial loading imposed during retrieval. Compression tests are commonly used to determine compressive ex vivo thrombus and clot analogue stiffness. However, there is a shortage of data in tension.

View Article and Find Full Text PDF

The rupture of atherosclerotic plaques in coronary and carotid arteries is the primary cause of fatal cardiovascular events. However, the rupture mechanics of the heterogeneous, highly collagenous plaque tissue, and how this is related to the tissue's fibrous structure, are not known yet. Existing pipelines to study plaque mechanics are limited to obtaining only gross mechanical characteristics of the plaque tissue, based on the assumption of structural homogeneity of the tissue.

View Article and Find Full Text PDF

Objective: Plaque rupture in atherosclerotic carotid arteries is a main cause of ischemic stroke and it is correlated with high plaque stresses. Hence, analyzing stress patterns is essential for plaque specific rupture risk assessment. However, the critical information of the multicomponent material properties of atherosclerotic carotid arteries is still lacking greatly.

View Article and Find Full Text PDF

Background: Accumulating evidence highlights the existence of distinct morphological subtypes of intracranial carotid arteriosclerosis. So far, little is known on the prevalence of these subtypes and subsequent stroke risk in the general population. We determined the prevalence of morphological subtypes of intracranial arteriosclerosis and assessed the risk of stroke associated with these subtypes.

View Article and Find Full Text PDF

Thrombus composition and mechanical properties significantly impact the ease and outcomes of thrombectomy procedures in patients with acute ischemic stroke. A wide variation exists in the composition of thrombi between patients. If a relationship can be determined between the composition of a thrombus and its mechanical behaviour, as well as between the composition of a thrombus and its radiological imaging characteristics, then there is the potential to personalise thrombectomy treatment based on each individual thrombus.

View Article and Find Full Text PDF

Atherosclerotic plaque rupture in coronary arteries, an important trigger of myocardial infarction, is shown to correlate with high levels of pressure-induced mechanical stresses in plaques. Finite element (FE) analyses are commonly used for plaque stress assessment. However, the required information of heterogenous material properties of atherosclerotic coronaries remains to be scarce.

View Article and Find Full Text PDF

Acute ischemic stroke occurs when a thrombus obstructs a cerebral artery, leading to sub-optimal blood perfusion to brain tissue. A recently developed, preventive treatment is the endovascular stroke treatment (EVT), which is a minimally invasive procedure, involving the use of stent-retrievers and/or aspiration catheters. Despite its increasing use, many critical factors of EVT are not well understood.

View Article and Find Full Text PDF

Background And Purpose: Mechanical properties of thromboemboli play an important role in the efficacy of endovascular thrombectomy (EVT) for acute ischemic stroke. However, very limited data on mechanical properties of human stroke thrombi are available. We aimed to mechanically characterize thrombi retrieved with EVT, and to assess the relationship between thrombus composition and thrombus stiffness.

View Article and Find Full Text PDF

Objective: Atherosclerotic plaque rupture in carotid arteries is a major source of cerebrovascular events. Calcifications are highly prevalent in carotid plaques, but their role in plaque rupture remains poorly understood. This work studied the morphometric features of calcifications in carotid plaques and their effect on the stress distribution in the fibrous plaque tissue at the calcification interface, as a potential source of plaque rupture and clinical events.

View Article and Find Full Text PDF

The catastrophic mechanical rupture of an atherosclerotic plaque is the underlying cause of the majority of cardiovascular events. The infestation of vascular calcification in the plaques creates a mechanically complex tissue composite. Local stress concentrations and plaque tissue strength properties are the governing parameters required to predict plaque ruptures.

View Article and Find Full Text PDF

Atherosclerotic plaque rupture is recognized as the primary cause of cardiac and cerebral ischaemic events. High structural plaque stresses have been shown to strongly correlate with plaque rupture. Plaque stresses can be computed with finite-element (FE) models.

View Article and Find Full Text PDF

Atherosclerotic plaque rupture is the primary trigger of fatal cardiovascular events. Fibrillar collagen in atherosclerotic plaques and their directionality are anticipated to play a crucial role in plaque rupture. This study aimed assessing 3D fiber orientations and architecture in atherosclerotic plaques for the first time.

View Article and Find Full Text PDF

In this paper, we report the development of a technique to characterize layer-specific nonlinear material properties of soft tissue in situ with the potential for in vivo testing. A soft tissue elastography robotic arm system comprising of a robotically manipulated 30 MHz high-resolution ultrasound probe, a custom designed compression head, and load cells has been developed to perform compression ultrasound imaging on the target tissue and measure reaction forces. A multilayer finite element model is iteratively optimized to identify the material coefficients of each layer.

View Article and Find Full Text PDF

High fidelity surgical simulations must rely upon accurate soft tissue models to ensure realism of the simulations. Simulating multi-layer tissue becomes increasingly complex due to the specific mechanical properties of each individual layer. We have developed a Soft Tissue Elastography Robotic Arm (STiERA) system capable of identifying layer specific properties of multi-layer constructs while maintaining the integrity of each layer.

View Article and Find Full Text PDF

Biomechanical models have the potential to predict plaque rupture. For reliable models, correct material properties of plaque components are a prerequisite. This study presents a new technique, where high resolution ultrasound displacement imaging and inverse finite element (FE) modeling is combined, to estimate material properties of plaque components.

View Article and Find Full Text PDF

Heart attacks are often caused by rupture of caps of atherosclerotic plaques in coronary arteries. Cap rupture occurs when cap stress exceeds cap strength. We investigated the effects of plaque morphology and material properties on cap stress.

View Article and Find Full Text PDF

Biomechanical models have the potential to predict failure of atherosclerotic plaques and to improve the risk assessment of plaque rupture. The applicability of these models depends strongly on the used material models. Current biomechanical models employ isotropic material models, although it is generally accepted that plaque tissue behaves highly anisotropic.

View Article and Find Full Text PDF