This bibliometric analysis offers a comprehensive investigation into membrane distillation (MD) research from 1990 to 2023. Covering 4389 publications, the analysis sheds light on the evolution, trends, and future directions of the field. It delves into authorship patterns, publication trends, prominent journals, and global contributions to reveal collaborative networks, research hotspots, and emerging themes within MD research.
View Article and Find Full Text PDFThe agricultural sector uses 70% of the world's freshwater. As clean water is extracted, groundwater quality decreases, making it difficult to grow crops. Brackish water desalination is a promising solution for agricultural areas, but the cost is a barrier to adoption.
View Article and Find Full Text PDFHeavy metals (HMs) has become one of the most serious pollutants that are harmful to the environment and ecology. This paper focused on the removal of lead contaminant from wastewater by forward osmosis-membrane distillation (FO-MD) hybrid process using seawater as draw solution. Modeling, optimization, and prediction of FO performance are developed using complementary approach based on response surface methodology (RSM) and an artificial neural network (ANN).
View Article and Find Full Text PDFFreshwater availability is increasingly under pressure from growing demand, resource depletion and environmental pollution. Desalination of saline wastewater is an option for supplying households, industry and agriculture with water, but technologies such as reverse osmosis, evaporation or electrodialysis are energy intensive. By contrast, membrane distillation (MD) is a competitive technology for water desalination.
View Article and Find Full Text PDFMembrane distillation (MD) is considered as a relatively high-energy requirement. To overcome this drawback, it is recommended to couple the MD process with solar energy as the renewable energy source in order to provide heat energy required to optimize its performance to produce permeate flux. In the present work, an original solar energy driven direct contact membrane distillation (DCMD) pilot plant was built and tested under actual weather conditions at Jeddah, KSA, in order to model and optimize permeate flux.
View Article and Find Full Text PDFMagnetic water treatment (MWT) could be an interesting alternative to chemical treatment to prevent scaling and has been used as an antiscaling treatment for domestic and industrial equipment. A two level-three factor (2(3)) full factorial design was used to evaluate the effects of pH (6-7.5), flow rate (0.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
September 2014
Direct contact membrane distillation (DCMD) process using polyvinylidene fluoride (PVDF) membrane was used for fluoride removal from aqueous solution. This study has been carried out on heat and mass transfer analyses in DCMD. The dusty-gas model was used to analyze the mass transfer mechanism and to calculate the permeate flux.
View Article and Find Full Text PDF