Publications by authors named "Ali Beyzavi"

To develop a novel nanovector for the delivery of genetic fragments and CRISPR/Cas9 systems in particular. Vitamin D-functionalized carbon dots (D/CDs) fabricated using one-step microwave-aided methods were characterized by different microscopic and spectroscopic techniques. The 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl tetrazolium bromide assay and flow cytometry were employed to determine the cell viability and transfection efficiency.

View Article and Find Full Text PDF

Safe and efficient delivery of CRISPR/Cas9 systems is still a challenge. Here we report the development of fluorescent nitrogen- and zinc-doped carbon dots (N-Zn-doped CDs) using one-step microwave-aided pyrolysis based on citric acid, branched PEI, and different zinc salts. These versatile nanovectors with a quantum yield of around 60% could not only transfect large CRISPR plasmids (∼9 kb) with higher efficiency (80%) compared to PEI and lipofectamine 2000 (Lipo 2K), but they also delivered mRNA into HEK 293T cells with the efficiency 20 times greater than and equal to that of PEI and Lipo 2K, respectively.

View Article and Find Full Text PDF

Eukaryotic genes are regulated by multivalent transcription factor complexes. Through cooperative self-assembly, these complexes perform nonlinear regulatory operations involved in cellular decision-making and signal processing. In this study, we apply this design principle to synthetic networks, testing whether engineered cooperative assemblies can program nonlinear gene circuit behavior in yeast.

View Article and Find Full Text PDF

Nanotechnology has illustrated significant potentials in biomolecular-sensing applications; particularly its introduction to anti-doping detection is of great importance. Illicit recreational drugs, substances that can be potentially abused, and drugs with dosage limitations according to the prohibited lists announced by the World Antidoping Agency (WADA) are becoming of increasing interest to forensic chemists. In this review, the theoretical principles of optical biosensors based on noble metal nanoparticles, and the transduction mechanism of commonly-applied plasmonic biosensors are covered.

View Article and Find Full Text PDF

Clonal populations of cells exhibit cell-to-cell variation in the transcription of individual genes. In addition to this noise in gene expression, heterogeneity in the proteome and the proteostasis network expands the phenotypic diversity of a population. Heat shock factor 1 (Hsf1) regulates chaperone gene expression, thereby coupling transcriptional noise to proteostasis.

View Article and Find Full Text PDF
Article Synopsis
  • Drug delivery research is growing due to advancements in nanotechnology and aims to create personalized medicine while minimizing side effects of cancer treatments.
  • Bio-inspired nanostructures derived from natural sources, especially from bacteria, are preferred for drug delivery systems.
  • The review highlights these bacterial components' applications, emphasizing their benefits in delivering drugs, genes, and vaccines effectively.
View Article and Find Full Text PDF

Advanced nanomaterials such as carbon nano-tubes (CNTs) display unprecedented properties such as strength, electrical conductance, thermal stability, and intriguing optical properties. These properties of CNT allow construction of small microfluidic devices leading to miniaturization of analyses previously conducted on a laboratory bench. With dimensions of only millimeters to a few square centimeters, these devices are called lab-on-a-chip (LOC).

View Article and Find Full Text PDF

Heat shock factor (Hsf1) regulates the expression of molecular chaperones to maintain protein homeostasis. Despite its central role in stress resistance, disease and aging, the mechanisms that control Hsf1 activity remain unresolved. Here we show that in budding yeast, Hsf1 basally associates with the chaperone Hsp70 and this association is transiently disrupted by heat shock, providing the first evidence that a chaperone repressor directly regulates Hsf1 activity.

View Article and Find Full Text PDF

Embryonic stem (ES) cells are pluripotent cells, which can differentiate into any cell type. This cell type has often been implicated as an eminent source of renewable cells for tissue regeneration and cellular replacement therapies. Studies on manipulation of the various differentiation pathways have been at the forefront of research.

View Article and Find Full Text PDF