Graphitizability of organic precursors is the topic of numerous investigations due to the wide applications of graphitic materials in the industry and emerging technologies of supercapacitors, batteries, etc. Most polymers, such as polydivinyl benzene (PDVB) are classified as non-graphitizings that do not convert to Graphite even after heating to 3000℃. Here, for the first time, the development of graphitic structure in the hierarchal porous sulfonated-PDVB microspheres without employing specific equipment or additives like metal catalysts, organic ingredients, or graphite particles, at 1100°C is reported.
View Article and Find Full Text PDFNanotechnologies have reached maturity and market penetration that require nano-specific changes in legislation and harmonization among legislation domains, such as the amendments to REACH for nanomaterials (NMs) which came into force in 2020. Thus, an assessment of the components and regulatory boundaries of NMs risk governance is timely, alongside related methods and tools, as part of the global efforts to optimise nanosafety and integrate it into product design processes, via Safe(r)-by-Design (SbD) concepts. This paper provides an overview of the state-of-the-art regarding risk governance of NMs and lays out the theoretical basis for the development and implementation of an effective, trustworthy and transparent risk governance framework for NMs.
View Article and Find Full Text PDFHere we report synthesis of ordered mesoporous titania films with various amounts of Ga content. The influence of Ga contents on mesostructural ordering, surface morphology, thermal stability, and anatase crystallinity is carefully investigated, by using grazing incidence small angle X-ray scattering (GISAXS), transmission electron microscopy (TEM), field emission scanning electron microscopy (FE-SEM), and Raman spectroscopy. The presence of highly dispersed Ga contents in the titania frameworks can promote the thermal stability of mesoporous titania structures, resulting that the anatase crystallization successfully proceeds without collapse of mesostructures.
View Article and Find Full Text PDFThe preparation of needle-shaped SnO(2) nanocrystals doped with different concentration of nickel by a simple sol-gel chemical precipitation method is demonstrated. By varying the Ni-dopant concentration from 0 to 5 wt%, the phase purity and morphology of the SnO(2) nanocrystals are significantly changed. Powder XRD results reveal that the SnO(2) doped with a nickel concentration of up to 1 wt% shows a single crystalline tetragonal rutile phase, whereas a slight change in the crystallite structure is observed for samples with nickel above 1wt%.
View Article and Find Full Text PDFThe decrease in particle size may offer new properties to drugs. In this study, we investigated the size reduction influence of the acetaminophen (C(8)H(9)O(2)N) particles by mechanical activation using a dry ball mill. The activated samples with the average size of 1 microm were then investigated in different time periods with the infrared (IR), inductively coupled plasma (ICP), atomic force microscopy (AFM), and X-ray diffraction (XRD) methods.
View Article and Find Full Text PDF