Despite the attractive combinations of cell/surface interactions, biocompatibility, and good mechanical properties of Ti-6Al-4V, there is still a need to enhance the early stages of cell/surface integration that are associated with the implantation of biomedical devices into the human body. This paper presents a novel, easy and reproducible method of nanoscale and nanostructured hydroxyapatite (HA) coatings on Ti-6Al-4V. The resulting nanoscale coatings/nanostructures are characterized using a combination of Raman spectroscopy, scanning electron microscopy equipped with energy dispersive x-ray spectroscopy.
View Article and Find Full Text PDFThis article presents the results of cell-surface interactions on polydimethylsiloxane (PDMS)-based substrates coated with nanoscale gold (Au) thin films. The surfaces of PDMS and PDMS-magnetite (MNP)-based substrates were treated with UV-ozone, prior to thermal vapor deposition (sputter-coated) of thin films of titanium (Ti) onto the substrates to improve the adhesion of Au coatings. The thin layer of Ti was thermally evaporated to improve interfacial adhesion, which was enhanced by a 40-nm thick film microwrinkled/buckled wavy layer of Au, that was coated to enhance cell-surface interactions and protein absorption.
View Article and Find Full Text PDF