Publications by authors named "Ali Al Hakim"

Heparin is one of the most widely used drugs in the world. It has been described as a lifesaving drug due to its roles in treating many serious diseases and illnesses including kidney dialysis, surgery, cardiac-invasive, heart attack, cardiac arrhythmia, acute coronary syndrome, pulmonary embolism, stroke, deep vein thrombosis, blood clot prevention, and many other related uses. Heparin drug products currently approved in the United States are obtained from porcine intestinal mucosa sourced from pigs, the majority of which is imported from China.

View Article and Find Full Text PDF

The contamination of the widely used lifesaving anticoagulant drug heparin in 2007 has drawn renewed attention to the challenges that are associated with the characterization, quality control and standardization of complex biological medicines from natural sources. Heparin is a linear, highly sulfated polysaccharide consisting of alternating glucosamine and uronic acid monosaccharide residues. Heparin has been used successfully as an injectable antithrombotic medicine since the 1930s, and its isolation from animal sources (primarily porcine intestine) as well as its manufacturing processes have not changed substantially since its introduction.

View Article and Find Full Text PDF

On November 13, 2013, the FDA granted accelerated approval to ibrutinib (IMBRUVICA capsules; Pharmacyclics, Inc.) for the treatment of patients with mantle cell lymphoma (MCL) who have received at least one prior therapy. On February 12, 2014, the FDA granted accelerated approval for the treatment of patients with chronic lymphocytic leukemia (CLL) who have received at least one prior therapy.

View Article and Find Full Text PDF

On April 29, 2014, the FDA granted accelerated approval to ceritinib (ZYKADIA; Novartis Pharmaceuticals Corporation), a breakthrough therapy-designated drug, for the treatment of patients with anaplastic lymphoma kinase (ALK)-positive, metastatic non-small cell lung cancer (NSCLC) who have progressed on or are intolerant to crizotinib. The approval was based on a single-arm multicenter trial enrolling 163 patients with metastatic ALK-positive NSCLC who had disease progression on (91%) or intolerance to crizotinib. Patients received ceritinib at a starting dose of 750 mg orally once daily.

View Article and Find Full Text PDF

On February 22, 2013, the FDA licensed ado-trastuzumab emtansine (Kadcyla; Genentech, Inc.) for use as a single agent for the treatment of patients with human epidermal growth factor receptor 2 (HER2)-positive metastatic breast cancer (MBC) who previously received trastuzumab and a taxane, separately or in combination. The clinical basis for licensure was a phase III trial in 991 patients with HER2-positive MBC that randomly allocated patients to receive ado-trastuzumab emtansine (n=495) or lapatinib in combination with capecitabine (n=496).

View Article and Find Full Text PDF

On May 15, 2013, the U.S. Food and Drug Administration (FDA) approved radium Ra 223 dichloride (Ra-223; Xofigo injection; Bayer HealthCare Pharmaceuticals Inc.

View Article and Find Full Text PDF

During the 2007-2008 heparin crisis it was found that the United States Pharmacopeia (USP) testing monograph for heparin sodium or low molecular weight heparins did not detect the presence of the contaminant, oversulfated chondroitin sulfate (OSCS). In response to this concern, new tests and specifications were developed by the Food and Drug Administration (FDA) and USP and put in place to detect not only the contaminant OSCS, but also to improve assurance of quality and purity of these drug products. The USP monographs for the low molecular weight heparins (LMWHs) approved for use in the United States (dalteparin, tinzaparin and enoxaparin) are also undergoing revision to include many of the same tests used for heparin sodium, including; one-dimensional (1D) 500 MHz (1)H NMR, SAX-HPLC, percent galactosamine in total hexosamine and anticoagulation time assays with purified Factor IIa or Factor Xa.

View Article and Find Full Text PDF

Previously, the FDA validated a method to assess the structure and composition of heparin products by separating and quantifying disaccharide level digests by reverse-phase-ion-pairing liquid chromatography (RPIP-HPLC) coupled to a low resolution and low sensitivity ion trap mass-spectrometer. Here, improved separation, information content and sensitivity were obtained through the use of reverse phase ion-pairing ultra-high pressure liquid chromatography (RPIP-UHPLC) coupled with a quadrupole time-of-flight (Q-TOF) mass spectrometer. Thus, with the new method, improved structural characterization of the same 20 lots of heparin sodium active pharmaceutical ingredients (APIs) as were analyzed in the previous work were obtained.

View Article and Find Full Text PDF

We evaluated polyacrylamide gel electrophoresis (PAGE) and size exclusion chromatography coupled with multi-angle laser light scattering (SEC-MALLS) approaches to determine weight-average molecular weight (M(w)) and polydispersity (PD) of heparins. A set of unfractionated heparin sodium (UFH) and low-molecular-weight heparin (LMWH) samples obtained from nine manufacturers which supply the US market were assessed. For SEC-MALLS, we measured values for water content, refractive index increment (dn/dc), and the second virial coefficient (A(2)) for each sample prior to molecular weight assessment.

View Article and Find Full Text PDF

Chemometric analysis of a set of one-dimensional (1D) (1)H nuclear magnetic resonance (NMR) spectral data for heparin sodium active pharmaceutical ingredient (API) samples was employed to distinguish USP-grade heparin samples from those containing oversulfated chondroitin sulfate (OSCS) contaminant and/or unacceptable levels of dermatan sulfate (DS) impurity. Three chemometric pattern recognition approaches were implemented: classification and regression tree (CART), artificial neural network (ANN), and support vector machine (SVM). Heparin sodium samples from various manufacturers were analyzed in 2008 and 2009 by 1D (1)H NMR, strong anion-exchange high-performance liquid chromatography, and percent galactosamine in total hexosamine tests.

View Article and Find Full Text PDF

Heparin is a naturally produced, heterogeneous compound consisting of variably sulfated and acetylated repeating disaccharide units. The structural complexity of heparin complicates efforts to assess the purity of the compound, especially when differentiating between similar glycosaminoglycans. Recently, heparin sodium contaminated with oversulfated chondroitin sulfate A (OSCS) has been associated with a rapid and acute onset of an anaphylactic reaction.

View Article and Find Full Text PDF

To differentiate heparin samples with varying amounts of dermatan sulfate (DS) impurities and oversulfated chondroitin sulfate (OSCS) contaminants, proton NMR spectral data for heparin sodium active pharmaceutical ingredient samples from different manufacturers were analyzed using multivariate chemometric techniques. A total of 168 samples were divided into three groups: (a) Heparin, [DS] ≤ 1.0% and [OSCS] = 0%; (b) DS, [DS] > 1.

View Article and Find Full Text PDF

Here we report results from the analyses by enzymatic digestion and reversed-phase ion-pairing liquid chromatography mass spectrometry (RPIP-LC-MS) of active pharmaceutical ingredient (API) unfractionated heparins (UFHs) from six different manufacturers and one USP standard sample. We employed a reverse phase ion-pairing chromatography method using a C(18) column and hexylamine as the ion-pairing reagent with acetonitrile gradient elution to separate disaccharides generated from the digestion of the heparins by lyase I and III (E.C.

View Article and Find Full Text PDF

Heparin, a widely used anticoagulant primarily extracted from animal sources, contains varying amounts of galactosamine impurities. Currently, the United States Pharmacopeia (USP) monograph for heparin purity specifies that the weight percent of galactosamine (%Gal) may not exceed 1%. In the present study, multivariate regression (MVR) analysis of (1)H NMR spectral data obtained from heparin samples was employed to build quantitative models for the prediction of %Gal.

View Article and Find Full Text PDF

During the 2007-2008 heparin crisis, it was found that the United States Pharmacopeia (USP) testing monograph for unfractionated heparin sodium (UFH) did not detect the presence of the contaminant, oversulfated chondroitin sulfate (OSCS) in heparin. In response to this concern, new tests and specifications were developed by the Food and Drug Administration (FDA) and USP and put in place to not only detect the contaminant OSCS but also to improve assurance of quality and purity of the drug product. Additional tests were also developed to monitor the heparin supply chain for other possible economically motivated additives or impurities.

View Article and Find Full Text PDF

Recently, certain lots of heparin have been associated with an acute, rapid onset of serious side effects indicative of an allergic-type reaction. To identify potential causes for this sudden rise in side effects, we examined lots of heparin that correlated with adverse events using orthogonal high-resolution analytical techniques. Through detailed structural analysis, the contaminant was found to contain a disaccharide repeat unit of glucuronic acid linked beta1-->3 to a beta-N-acetylgalactosamine.

View Article and Find Full Text PDF

Background: There is an urgent need to determine whether oversulfated chondroitin sulfate (OSCS), a compound contaminating heparin supplies worldwide, is the cause of the severe anaphylactoid reactions that have occurred after intravenous heparin administration in the United States and Germany.

Methods: Heparin procured from the Food and Drug Administration, consisting of suspect lots of heparin associated with the clinical events as well as control lots of heparin, were screened in a blinded fashion both for the presence of OSCS and for any biologic activity that could potentially link the contaminant to the observed clinical adverse events. In vitro assays for the activation of the contact system and the complement cascade were performed.

View Article and Find Full Text PDF

Impurities in drug substances and drug products have been important regulatory issues in the Office of Generic Drugs by having significant impact on the approvability of Abbreviated New Drug Application (ANDAs). This review begins with a discussion of ANDAs and its similarity/differences with NDAs, highlighting the importance of control of pharmaceutical impurities in generic drug product development and regulatory assessment. An overview of the FDA draft guidance documents "ANDAs: Impurities in Drug Substances" and "ANDAs: Impurities in Drug Products" are provided.

View Article and Find Full Text PDF