Publications by authors named "Ali Akbar Samadani"

Objective: One of the most malignant types of tumors with a remarkable ability of recurrence rate and aggressiveness is glioblastoma multiforme(GBM). Anyway, according to the restricted remedies accessible for the treatment of this serious tumor, there is no confident and stable therapeutic strategy. Notably, bioinformatics analysis can detect many effective genes in the diagnosis and treatment of GBM.

View Article and Find Full Text PDF

Glioblastoma (GBM) is a very deadly type of brain tumor with a poor prognosis and a short survival rate. Recent advancements in understanding GBM's molecular and genetic characteristics have led to the development of various therapeutic and diagnostic strategies. Key elements such as microRNAs, lncRNAs, exosomes, angiogenesis, and chromatin modifications are highlighted, alongside significant epigenetic alterations that impact therapy and diagnosis.

View Article and Find Full Text PDF

Glioblastoma multiforme (GBM) is the most common harmful high-grade brain tumor with high mortality and low survival rate. Importantly, besides routine diagnostic and therapeutic methods, modern and useful practical techniques are urgently needed for this serious malignancy. Correspondingly, the translational medicine focusing on genetic and epigenetic profiles of glioblastoma, as well as the immune framework and brain microenvironment, based on these challenging findings, indicates that key clinical interventions include immunotherapy, such as immunoassay, oncolytic viral therapy, and chimeric antigen receptor T (CAR T) cell therapy, which are of great importance in both diagnosis and therapy.

View Article and Find Full Text PDF

Exosomes which are membrane vesicles released by cells have gained significant interest in the field of cancer therapy as a novel means of intercellular communication. Their role in immune activation and their pathophysiological functions in cancer therapy have been recognized. Exosomes carry diverse bioactive components including proteins, mRNA, microRNAs, and bioactive lipids.

View Article and Find Full Text PDF

Recurrent pregnancy loss (RPL), often known as spontaneous miscarriages occurring two or more times in a row, is a reproductive disease that affects certain couples. The cause of RPL is unknown in many cases, leading to difficulties in therapy and increased psychological suffering in couples. Toll-like receptors (TLR) have been identified as crucial regulators of inflammation in various human tissues.

View Article and Find Full Text PDF

Background & Objective: Besides the clinical and laboratory research on the COVID-19 virus, the bioinformatics study in the field of genetics of immunity to COVID-19 is of particular importance. In this account, studies show that in patients with COVID-19, the level of tumor necrosis alpha (TNFα) and interleukin-6 (IL-6) is high and in severe cases of COVID-19, the production of IL-6, TNF-α, and other cytokines increases profoundly. On the other hand, investigating the molecular structure and receptors of IL-6 and TNFα and the structural analysis of the receptor proteins may potentially help to develop new therapeutic plans for COVID-19 infection.

View Article and Find Full Text PDF

One of the most lethal and aggressive types of malignancies with a high mortality rate and poor response to treatment is glioblastoma multiforme (GBM). This means that modernizing the medications used in chemotherapy, in addition to medicines licensed for use in other illnesses and chosen using a rationale process, can be beneficial in treating this illness. Meaningly, drug combination therapy with chemical or herbal originations or implanting a drug wafer in tumors to control angiogenesis is of great importance.

View Article and Find Full Text PDF

Background: Molecular markers in Colorectal Cancer (CRC) are needed for more accurate classification and personalized treatment. In this way, we investigated the effects of the gene on clinical outcomes of its expression fluctuations and its polymorphism at rs1267623 in CRC.

Methods: In this study, 36.

View Article and Find Full Text PDF

Recurrent pregnancy Loss (RPL)is a frequent and upsetting condition. Besides the prevalent cause of RPL including chromosomal defects in the embryo,the effect of translational elements like alterations of epigenetics are of great importance. The emergence of epigenetics has offered a fresh outlook on the causes and treatment of RPL by focusing on the examination of DNA methylation.

View Article and Find Full Text PDF

Interleukin 15 (IL-15) has emerged as a crucial factor in the relationship between natural killer (NK) cells and immunotherapy for cancer. This review article aims to provide a comprehensive understanding of the role of IL-15 in NK cell-mediated immunotherapy. First, the key role of IL-15 signaling in NK cell immunity is discussed, highlighting its regulation of NK cell functions and antitumor properties.

View Article and Find Full Text PDF

Cancer is one of the most serious leading causes of death in the world. Many eclectic factors are involved in cancer progression including genetic and epigenetic alongside environmental ones. In this account, the performance and fluctuations of microRNAs are significant in cancer diagnosis and treatment, particularly as diagnostic biomarkers in oncology.

View Article and Find Full Text PDF

Introduction: APC and TP53 are the two most regularly mutated genes in colon adenocarcinoma (COAD), especially in progressive malignancies and antitumoral immune response. The current bioinformatics analysis investigates the APC and TP53 gene expression profile in colon adenocarcinoma as a prognostic characteristic for survival, particularly concentrating on the correlated immune microenvironment.

Methods: Clinical and genetic data of colon cancer and normal tissue samples were obtained from The Cancer Genome Atlas (TCGA)-COAD and Genotype-Tissue Expression (GTEx) online databases, respectively.

View Article and Find Full Text PDF

Colorectal cancer (CRC) and gastric cancer (GC) are major contributors to cancer-related mortality worldwide. Despite advancements in understanding molecular mechanisms and improved drug treatments, the overall survival rate for patients remains unsatisfactory. Metastasis and drug resistance are major challenges contributing to the high mortality rate in both CRC and GC.

View Article and Find Full Text PDF

Cancer is a complex and multifaceted disease characterized by uncontrolled cell growth, genetic alterations, and disruption of normal cellular processes, leading to the formation of malignant tumors with potentially devastating consequences for patients. Molecular research is important in the diagnosis and treatment, one of the molecular mechanisms involved in various cancers is the fluctuation of gene expression. Non-coding RNAs, especially microRNAs, are involved in different stages of cancer.

View Article and Find Full Text PDF

The advent of immune checkpoint inhibitors (ICIs) has led to noteworthy progressions in the management of diverse cancer types, as evidenced by the pioneering "ipilimumab" medication authorized by US FDA in 2011. Importantly, ICIs agents have demonstrated encouraging potential in bringing about transformation across diverse forms of cancer by selectively targeting the immune checkpoint pathways that are exploited by cancerous cells for dodging the immune system, culminating in progressive and favorable health outcomes for patients. The primary mechanism of action (MOA) of ICIs involves blocking inhibitory immune checkpoints.

View Article and Find Full Text PDF

Aplastic anemia is a rare disease of the hematopoietic system. Although some viral agents have been implicated, the association between COVID-19 and aplastic anemia is unclear. In this way, several cases of aplastic anemia have been reported following infection with COVID-19.

View Article and Find Full Text PDF

Objectives: MicroRNA expression disruptions play an important function in the expansion of gastric cancer. Previous investigation has indicated that miR-372-5p doing as an oncogene in several malignancies. CDX1 and CDX2, as target genes of miR-372-5p, play the role of tumor suppressors and oncogenes in gastric cancer cells, respectively.

View Article and Find Full Text PDF

DNA methylation is the most important epigenetic element that activates the inhibition of gene transcription and is included in the pathogenesis of all types of malignancies. Remarkably, the effectors of DNA methylation are DNMTs (DNA methyltransferases) that catalyze or keep methylation of hemimethylated DNA after the DNA replication process. DNA methylation structures in cancer are altered, with three procedures by which DNA methylation helps cancer development which are including direct mutagenesis, hypomethylation of the cancer genome, and also focal hypermethylation of the promoters of TSGs (tumor suppressor genes).

View Article and Find Full Text PDF

Infertility is experienced by 8%-12% of adults in their reproductive period globally and has become a prevalent concern. Besides routine therapeutic methods, stem cells are rapidly being examined as viable alternative therapies in regenerative medicine and translational investigation. Remarkable progress has been made in understanding the biology and purpose of stem cells.

View Article and Find Full Text PDF

Background: Colorectal cancer (CRC) is one of the most important cancers in the world, and its prevalence varies depending on the geographical area. Genetically, tumor regeneration in CRC as a multi-step process involves activating mutations in protocogenes and losing the function of tumor suppressor genes as well as DNA repair and recovery genes. Occur in this way, our goal was to investigate the expression of KLF6 genes as a tumor suppressor and MUTYH involved in the DNA repair process in colorectal cancer.

View Article and Find Full Text PDF

Thyroid cancer (TC) is the most common endocrine cancer, accounting for 1.7% of all cancer cases. It has been reported that the existing approach to diagnosing TC is problematic.

View Article and Find Full Text PDF

Gastric cancer (GC) is a significant cause of cancer mortality which has led to focused exploration of the pathology of GC. The advent of genome-wide analysis methods has made it possible to uncover genetic and epigenetic fluctuation such as abnormal DNA methylation in gene promoter regions that is expected to play a key role in GC. The study of gastric malignancies requires an etiological perspective, and () was identified to play a role in GC.

View Article and Find Full Text PDF

Glioblastoma multiforme (GBM) is a fatal brain tumor in adults with a bleak diagnosis. Expansion of immunosuppressive and malignant CD4 + FoxP3 + GITR + regulatory T cells is one of the hallmarks of GBM. Importantly, most of the patients with GBM expresses the tryptophan-degrading enzyme indoleamine 2,3-dioxygenase (IDO).

View Article and Find Full Text PDF

Gastric cancer (GC) is the fourth most frequent disease in the world and the second cause of cancer-related death. In this way, over 80% of diagnoses are made in the middle to advanced degrees of the disease, underscoring the requirement for innovative biomarkers that can be identified quickly. Meaningly, biomarkers that can complement endoscopic diagnosis and be used to detect patients with a high risk of GC are desperately needed.

View Article and Find Full Text PDF

Background: Tumor eradication is one of the most important challengeable categories in oncological studies. In this account, besides the molecular genetics methods including cell therapy, gene therapy, immunotherapy, and general cancer therapy procedures like surgery, radiotherapy, and chemotherapy, photodynamic adjuvant therapy is of great importance. Photodynamic therapy (PDT) as a relatively noninvasive therapeutic method utilizes the irradiation of an appropriate wavelength which is absorbed by a photosensitizing agent in the presence of oxygen.

View Article and Find Full Text PDF