Purpose: Ultrasound imaging is key in the management of patients with an abdominal aortic aneurysm (AAA). It was recently shown that the cyclic diameter variations between diastole and systole, which can be quantified with US imaging, increase significantly with the strength of the applied probe pressure on the patient's abdomen. The goal of this study is to investigate this effect more thoroughly.
View Article and Find Full Text PDFAortic smooth muscle cells (SMCs) play a vital role in maintaining homeostasis in the aorta by sensing and responding to mechanical stimuli. However, the mechanisms that underlie the ability of SMCs to sense and respond to stiffness change in their environment are still partially unclear. In this study, we focus on the role of acto-myosin contractility in stiffness sensing and introduce a novel continuum mechanics approach based on the principles of thermal strains.
View Article and Find Full Text PDFIn the current study, we developed a new computational methodology to simulate wound healing in soft tissues. We assumed that the injured tissue recovers partially its mechanical strength and stiffness by gradually increasing the volume fraction of collagen fibers. Following the principles of the constrained mixture theory, we assumed that new collagen fibers are deposited at homeostatic tension while the already existing tissue undergoes a permanent deformation due to the effects of remodeling.
View Article and Find Full Text PDFAortic smooth muscle cells (SMCs) play a vital role in maintaining mechanical homeostasis in the aorta. We recently found that SMCs of aneurysmal aortas apply larger traction forces than SMCs of healthy aortas. This result was explained by the significant increase of hypertrophic SMCs abundance in aneurysms.
View Article and Find Full Text PDFBiomech Model Mechanobiol
April 2021
Smooth muscle cells (SMCs) usually express a contractile phenotype in the healthy aorta. However, aortic SMCs have the ability to undergo profound changes in phenotype in response to changes in their extracellular environment, as occurs in ascending thoracic aortic aneurysms (ATAA). Accordingly, there is a pressing need to quantify the mechanobiological effects of these changes at single cell level.
View Article and Find Full Text PDFMechanical properties of muscle tissue are crucial in biomechanical modeling of the human body. Muscle tissue is a combination of Muscle Fibers (MFs) and connective tissue including collagen and elastin fibers. There are a lot of passive muscle models in the literature but most of them do not consider any distinction between Collagen Fibers (CFs) and MFs, or at least do not consider the mechanical effects of the CFs on the Three-Dimensional (3-D) behavior of tissue.
View Article and Find Full Text PDFMaterial properties of the human tongue tissue have a significant role in understanding its function in speech, respiration, suckling, and swallowing. Tongue as a combination of various muscles is surrounded by the mucous membrane and is a complicated architecture to study. As a first step before the quantitative mechanical characterization of human tongue tissues, the passive biomechanical properties in the superior longitudinal muscle (SLM) and the mucous tissues of a bovine tongue have been measured.
View Article and Find Full Text PDF