Publications by authors named "Ali Akbar Heidari"

Although separation of solutes from organic solutions is considered a challenging process, it is inevitable in various chemical, petrochemical and pharmaceutical industries. OSN membranes are the heart of OSN technology that are widely utilized to separate various solutes and contaminants from organic solvents, which is now considered an emerging field. Hence, numerous studies have been attracted to this field to manufacture novel membranes with outstanding properties.

View Article and Find Full Text PDF

Secondary Li-ion batteries have been paid attention to wide-range applications of power source for the portable electronics, electric vehicle, and electric storage reservoir. Generally, lithium-ion batteries are comprised of four components including anode, cathode, electrolyte and separator. Although separators do not take part in the electrochemical reactions in a lithium-ion (Li-ion) battery, they conduct the critical functions of physically separating the positive and negative electrodes to prevent electrical short circuit while permitting the free flow of lithium ions through the liquid electrolyte that fill in their open porous structure.

View Article and Find Full Text PDF

The metal corrosion is considered as a severe threat to the national economy and industry structure, capable of triggering significant economic losses and severe damages, involving innumerable fields in daily life and industries. This review provides an overview of the physioelectrochemical studies on anticorrosive properties of various types of graphene coatings. Required electrochemical techniques for the investigation of anticorrosive efficiency, various types of graphene-based materials coatings along with different routes to provide desirable coated layers are discussed in detail.

View Article and Find Full Text PDF

This review gives an overview of the synthesis, surface and electrochemical investigations over ternary nanocomposite of conductive polymers in the development of new supercapacitors. They utilize both Faradaic and non-Faradaic procedures to store charge, leading to higher specific capacitance and energy density, higher cell voltage, longer life cycle and moderated power density. Owing to a unique combination of features such as superb electrical conductivity, corrosion resistance in aqueous electrolytes, highly modifiable nanostructures, long cycle life and the large theoretical specific-surface area, the use of ternary nanocomposites as a supercapacitor electrode material has become the focus of a significant amount of current scientific researches in the field of energy storage devices.

View Article and Find Full Text PDF