Publications by authors named "Ali Aghajanirefah"

Recent studies on recombinant adeno-associated viral (rAAV) vector production demonstrated the generation of infectious viral particles in Saccharomyces cerevisiae. Proof-of-concept results showed low vector yields that correlated with low AAV DNA encapsidation rates. In an attempt to understand the host cell response to rAAV production, we profiled proteomic changes throughout the fermentation process by mass spectrometry.

View Article and Find Full Text PDF

B cell activation during normal immune responses and oncogenic transformation impose increased metabolic demands on B cells and their ability to retain redox homeostasis. While the serine/threonine-protein phosphatase 2A (PP2A) was identified as a tumor suppressor in multiple types of cancer, our genetic studies revealed an essential role of PP2A in B cell tumors. Thereby, PP2A redirects glucose carbon utilization from glycolysis to the pentose phosphate pathway (PPP) to salvage oxidative stress.

View Article and Find Full Text PDF

Aim: To identify the BCL11A intron-2 enhancer linkage disequilibrium (LD) block, harboring two previously identified SNPs, associating with the hydroxyurea response in β-thalassemia patients and the functional significance of this region.

Materials & Methods: Several neighboring SNPs were genotyped in our cohort. The associating LD block was identified, and its function studied in K562 erythroid cells via CRISPR/Cas9 genome editing.

View Article and Find Full Text PDF

Inactivation of the tumor suppressor gene encoding the transcriptional regulator Ikaros () is a hallmark of BCR-ABL1 precursor B cell acute lymphoblastic leukemia (pre-B ALL). However, the mechanisms by which Ikaros functions as a tumor suppressor in pre-B ALL remain poorly understood. Here, we analyzed a mouse model of BCR-ABL1 pre-B ALL together with a new model of inducible expression of wild-type Ikaros in mutant human BCR-ABL1 pre-B ALL.

View Article and Find Full Text PDF

Monocyte differentiation into macrophages represents a cornerstone process for host defense. Concomitantly, immunological imprinting of either tolerance or trained immunity determines the functional fate of macrophages and susceptibility to secondary infections. We characterized the transcriptomes and epigenomes in four primary cell types: monocytes and in vitro-differentiated naïve, tolerized, and trained macrophages.

View Article and Find Full Text PDF

Epigenetic reprogramming of myeloid cells, also known as trained immunity, confers nonspecific protection from secondary infections. Using histone modification profiles of human monocytes trained with the Candida albicans cell wall constituent β-glucan, together with a genome-wide transcriptome, we identified the induced expression of genes involved in glucose metabolism. Trained monocytes display high glucose consumption, high lactate production, and a high ratio of nicotinamide adenine dinucleotide (NAD(+)) to its reduced form (NADH), reflecting a shift in metabolism with an increase in glycolysis dependent on the activation of mammalian target of rapamycin (mTOR) through a dectin-1-Akt-HIF-1α (hypoxia-inducible factor-1α) pathway.

View Article and Find Full Text PDF

Genetic studies have identified common variants within the intergenic region (HBS1L-MYB) between GTP-binding elongation factor HBS1L and myeloblastosis oncogene MYB on chromosome 6q that are associated with elevated fetal hemoglobin (HbF) levels and alterations of other clinically important human erythroid traits. It is unclear how these noncoding sequence variants affect multiple erythrocyte characteristics. Here, we determined that several HBS1L-MYB intergenic variants affect regulatory elements that are occupied by key erythroid transcription factors within this region.

View Article and Find Full Text PDF

Here, we show that transcription factors bound to regulatory sequences can be identified by purifying these unique sequences directly from mammalian cells in vivo. Using targeted chromatin purification (TChP), a double-pull-down strategy with a tetracycline-sensitive "hook" bound to a specific promoter, we identify transcription factors bound to the repressed γ-globin gene-associated regulatory regions. After validation of the binding, we show that, in human primary erythroid cells, knockdown of a number of these transcription factors induces γ-globin gene expression.

View Article and Find Full Text PDF

Chromatin target of Prmt1 (Chtop) is a vertebrate-specific chromatin-bound protein that plays an important role in transcriptional regulation. As its mechanism of action remains unclear, we identified Chtop-interacting proteins using a biotinylation-proteomics approach. Here we describe the identification and initial characterization of Five Friends of Methylated Chtop (5FMC).

View Article and Find Full Text PDF