Publications by authors named "Ali AbuMadighem"

In studying the molecular underpinning of spermatogenesis, we expect to understand the fundamental biological processes better and potentially identify genes that may lead to novel diagnostic and therapeutic strategies toward precision medicine in male infertility. In this review, we emphasized our perspective that the path forward necessitates integrative studies that rely on complementary approaches and types of data. To comprehensively analyze spermatogenesis, this review proposes four axes of integration.

View Article and Find Full Text PDF

This research presents a novel testis-on-a-chip (ToC) platform. Testicular cells are enzymatically isolated from the seminiferous tubules of sexually immature mice, seeded in a methylcellulose gel and cultured in a microfluidic chip. The unique design sandwiches the soft methylcellulose between stiffer agar support gels.

View Article and Find Full Text PDF

Leukemia and treatment of male patients with anticancer therapy (aggressive chemotherapy and/or radiotherapy) may lead to infertility or even permanent male sterility. Their mechanisms of spermatogenesis impairment and the decrease in male fertility are not yet clear. We showed that under acute myeloid leukemia (AML) conditions, alone and in combination with cytarabine (CYT), there was significant damage in the histology of seminiferous tubules, a significant increase in apoptotic cells of the seminiferous tubules, and a reduction in spermatogonial cells (SALL and PLZF) and in meiotic (CREM) and post-meiotic (ACROSIN) cells.

View Article and Find Full Text PDF

Infertility affects one in six couples, half of which are caused by a male factor. Male infertility can be caused by both, qualitative and quantitative defects, leading to Oligo- astheno-terato-zoospermia (OAT; impairment in ejaculate sperm cell concentration, motility and morphology). Azoospermia defined as complete absence of sperm cells in the ejaculation.

View Article and Find Full Text PDF

Aggressive chemotherapy treatment may lead to male infertility. Prepubertal boys do not produce sperm at this age, however, they have spermatogonial stem cells in their testes. Here, we examined the effect of intraperitoneal injection of cyclophosphamide (CP) on the capacity of immature mice (IM) to develop spermatogenesis in vivo and in vitro [using methylcellulose culture system (MCS)].

View Article and Find Full Text PDF

Pigment epithelium derived factor (PEDF) is a multifunctional secretory soluble glycoprotein that belongs to the serine protease inhibitor (serpin) family. It was reported to have neurotrophic, anti-angiogenic and anti-tumorigenic activity. Recently, PEDF was found in testicular peritubular cells and it was assumed to be involved in the avascular nature of seminiferous tubules.

View Article and Find Full Text PDF

Background: Mutation () have been found across ethnicities and have been shown to cause variable penetrance of an array of pathological traits, including intellectual disability, retinitis pigmentosa and ciliopathies.

Methods: Human clinical phenotyping, surgical testicular sperm extraction and testicular tissue staining. Generation and analysis of () ( orthologue) CAS9-knockout lines.

View Article and Find Full Text PDF

Aggressive chemotherapy may lead to permanent male infertility. Prepubertal males do not generate sperm, but their testes do contain spermatogonial cells (SPGCs) that could be used for fertility preservation. In the present study, we examined the effect of busulfan (BU) on the SPGCs of immature mice, and the possible induction of the survivor SPGCs to develop spermatogenesis in 3D in-vitro culture.

View Article and Find Full Text PDF

Aggressive chemotherapy in childhood often results in testicular damage and consequently jeopardizes future fertility. The presence of spermatogonial cells (SPGCs) in the testes of prepubertal cancer patient boys (PCPBs) can be used to develop future strategies for male fertility preservation. In the present study, we examined the presence of SPGCs in testes of chemotherapy-treated PCPBs and their ability to develop spermatogenesis in vitro using a three-dimensional culture system.

View Article and Find Full Text PDF