Publications by authors named "Ali Abou Hassan"

Iron oxide nanoparticles, due to their magnetic properties, are versatile tools for biomedical applications serving both diagnostic and therapeutic roles. Their performance is intricately intertwined with their fate in the demanding biological environment. Once inside cells, these nanoparticles can be degraded, implying a loss of magnetic efficacy, but also transformed into neo-synthesized magnetic nanoparticles, potentially restoring functionality.

View Article and Find Full Text PDF

ConspectusInspired by the biological world, new cross-border disciplines and technologies have emerged. Relevant examples include systems chemistry, which offers a bottom-up approach toward chemical complexity, and bio/chemical information and communication technology (bio/chemical ICT), which explores the conditions for propagating signals among individual microreactors separated by selectively permeable membranes. To fabricate specific arrays of microreactors, microfluidics has been demonstrated as an excellent method.

View Article and Find Full Text PDF

Magnetomicelles were produced by the self-assembly of magnetite iron oxide nanoflowers and the amphiphilic poly(styrene)--poly(acrylic acid) block copolymer to deliver a multifunctional theranostic agent. Their bioprocessing by cancer cells was investigated in a three-dimensional spheroid model over a 13-day period and compared with nonencapsulated magnetic nanoflowers. A degradation process was identified and monitored at various scales, exploiting different physicochemical fingerprints.

View Article and Find Full Text PDF

Due to the increasing evidence of widespread sub-micron pollutants in the atmosphere, the impact of airborne nanoparticles is a subject of great relevance. In particular, the smallest particles are considered the most active and dangerous, having a higher surface/volume ratio. Here we tested the effect of iron oxide (FeO) nanoparticles (IONPs) with different mean diameter and size distribution on the model plant Tillandsia usneoides.

View Article and Find Full Text PDF

Effective prevention of recurrent kidney stone disease requires the understanding of the mechanisms of its formation. Numerous observations have demonstrated that a large number of pathological calcium oxalate kidney stones develop on an apatitic calcium phosphate deposit, known as Randall's plaque. In an attempt to understand the role of the inorganic hydroxyapatite phase in the formation and habits of calcium oxalates, we confined their growth under dynamic physicochemical and flow conditions in a reversible microfluidic channel coated with hydroxyapatite.

View Article and Find Full Text PDF

Magnetic nanoparticles have been extensively explored as theranostic agents both in academic and clinical settings. Their self-assembly into nanohybrids using block copolymers can lead to new nanostructures with high functionalities and performances. Herein, we demonstrate a high-throughput and scalable method to elaborate magnetic micelles by the assembly of iron oxide magnetite nanoflowers, an efficient nanoheater, and the block copolymer Poly(styrene)--poly(acrylic acid) a microfluidic-assisted nanoprecipitation method.

View Article and Find Full Text PDF

With their distinctive physicochemical features, nanoparticles have gained recognition as effective multifunctional tools for biomedical applications, with designs and compositions tailored for specific uses. Notably, magnetic nanoparticles stand out as first-in-class examples of multiple modalities provided by the iron-based composition. They have long been exploited as contrast agents for magnetic resonance imaging (MRI) or as anti-cancer agents generating therapeutic hyperthermia through high-frequency magnetic field application, known as magnetic hyperthermia (MHT).

View Article and Find Full Text PDF

Oriented attachment of nanobricks into hierarchical multi-scale structures such as inorganic nanoclusters is one of the crystallization mechanisms that has revolutionized the field of nano and materials science. Herein, we show that the mosaicity, which measures the misalignment of crystal plane orientation between the nanobricks, governs their magneto-optical properties as well as the magnetic heating functions of iron oxide nanoclusters. Thanks to high-temperature and time-resolved millifluidic, we were able to isolate and characterize (structure, properties, function) the different intermediates involved in the diverse steps of the nanocluster's formation, to propose a detailed dynamical mechanism of their formation and establish a clear correlation between changes in mosaicity at the nanoscale and their resulting physical properties.

View Article and Find Full Text PDF

Nanoparticles (NPs) are at the leading edge of nanomedicine, and determining their biosafety remains a mandatory precondition for biomedical applications. Herein, we explore the bioassimilation of copper sulfide NPs reported as powerful photo-responsive anticancer therapeutic agents. The nanoparticles investigated present a hollow shell morphology, that can be left empty (CuS NPs) or be filled with an iron oxide flower-like core (iron oxide@CuS NPs), and are compared with the iron oxide nanoparticles only (iron oxide NPs).

View Article and Find Full Text PDF

One of the most versatile routes for the elaboration of nanomaterials in materials science, including the synthesis of magnetic iron oxide nanoclusters, is the high-temperature polyol process. However, despite its versatility, this process still lacks reproducibility and scale-up, in addition to the low yield obtained in final materials. In this work, we demonstrate a home-made multiparametric continuous flow millifluidic system that can operate at high temperatures (up to 400 °C).

View Article and Find Full Text PDF

Magnetite and maghemite multicore nanoflowers (NFs) synthesized using the modified polyol-mediated routes are to date among the most effective nanoheaters in magnetic hyperthermia (MHT). Recently, magnetite NFs have also shown high photothermal (PT) performances in the most desired second near-infrared (NIR-II) biological window, making them attractive in the field of nanoparticle-activated thermal therapies. However, what makes magnetic NFs efficient heating agents in both modalities still remains an open question.

View Article and Find Full Text PDF

We study the impact of delayed feedbacks in the collective synchronization of ensembles of identical and autonomous micro-oscillators. To this aim, we consider linear arrays of Belousov-Zhabotinsky (BZ) oscillators confined in micro-compartmentalised systems, where the delayed feedback mimics natural lags that can arise due to the confinement properties and mechanisms driving the inter-oscillator communication. The micro-oscillator array is modeled as a set of Oregonator-like kinetics coupled via mass exchange of the chemical messengers.

View Article and Find Full Text PDF

Water/oil/water (w/o/w) double emulsions (DEs) are multicompartment structures which can be used in many technological applications and in fundamental studies as models of cell like microreactors or templates for other materials. Herein, we study the flow dynamics of water/oil/water double emulsions generated in a microfluidic device and stabilized with the phospholipid 1,2-dimyristoyl--glycero-3-phosphocholine (DMPC). We show that by varying the concentration of lipids in the oil phase (chloroform) or by modulating the viscosity of the aqueous continuous phase, the double emulsions under flow exhibit a rich dynamic behavior.

View Article and Find Full Text PDF
Article Synopsis
  • Urinary stents and catheters, while used for decades, pose issues like infections, discomfort, and complications, prompting researchers to seek improvements at the molecular level.
  • The ENIUS network brought together scientists to explore various innovative approaches like specialized coatings, biodegradable materials, and advanced technologies to enhance urinary implant performance.
  • The study highlights the importance of collaboration among researchers and clinicians to advance these promising technologies into clinical use, emphasizing that many concepts are still at the developmental stage.
View Article and Find Full Text PDF

Despite efforts in producing nanoparticles with tightly controlled designs and specific physicochemical properties, these can undergo massive nano-bio interactions and bioprocessing upon internalization into cells. These transformations can generate adverse biological outcomes and premature loss of functional efficacy. Hence, understanding the intracellular fate of nanoparticles is a necessary prerequisite for their introduction in medicine.

View Article and Find Full Text PDF

We describe a novel synthesis allowing one to enhance the load of magnetic nanoparticles and gold nanorods in nanogels. Two different structures, simple cores and core-shell, were synthesized and their heating properties upon alternating magnetic field or laser exposure are compared. Remarkably, the core-shell structure showed a greater heating capacity in the two modalities.

View Article and Find Full Text PDF

Background: The interactions between nanoparticles and the biological environment have long been studied, with toxicological assays being the most common experimental route. In parallel, recent growing evidence has brought into light the important role that cell mechanics play in numerous cell biological processes. However, despite the prevalence of nanotechnology applications in biology, and in particular the increased use of magnetic nanoparticles for cell therapy and imaging, the impact of nanoparticles on the cells' mechanical properties remains poorly understood.

View Article and Find Full Text PDF

The transformation of glycals into 2,3-unsaturated glycosyl derivatives, reported by Ferrier in 1962, is supposed to involve an α,β unsaturated glycosyl cation, an elusive ionic species that has still to be observed experimentally. Herein, while combination of TfOH and flow conditions failed to observe this ionic species, its extended lifetime in superacid solutions allowed its characterization by NMR-based structural analysis supported by DFT calculations. This allyloxycarbenium ion was further exploited in the Ferrier rearrangement to afford unsaturated nitrogen-containing C-aryl glycosides and C-alkyl glycosides under superacid and flow conditions, respectively.

View Article and Find Full Text PDF

Magnetic nanoparticles have a broad spectrum of biomedical applications including cell separation, diagnostics and therapy. One key issue is little explored: how do the engineered nanoparticles interact with blood components after injection? The formation of bioconjugates in the bloodstream and subsequent reactions are potentially toxic due to the ability to induce an immune response. The understanding of the underlying processes is of major relevance to design not only efficient, but also safe nanoparticles for e.

View Article and Find Full Text PDF

Stable cell-like multisomes encapsulating the chemical oscillator Belousov-Zhabotinsky were engineered and organized in a linear network of diffusively-coupled chemical oscillators by using microfluidics. The multi-compartmentalization and the spatial configuration resulted in a new global synchronization scenario. After an initial induction interval, all the oscillators started to pulsate in phase with a halved period with respect to the natural one.

View Article and Find Full Text PDF

The photothermal use of iron oxide magnetic nanoparticles (NPs) is becoming more and more popular and documented. Herein, we compared the photothermal (PT) therapy potential versus magnetic hyperthermia (MHT) modality of magnetic nanospheres, largely used in the biomedical field and magnetic multicore nanoflowers known among the best nanoheaters. The NPs were imaged using transmission electron microscopy and their optical properties characterized by UV-Vis-NIR-I-II before oxidation (magnetite) and after oxidation to maghemite.

View Article and Find Full Text PDF

Networks of diffusively coupled inorganic oscillators, confined in nano- and microcompartments, are effective for predicting and understanding the global dynamics of those systems where the diffusion of activatory or inhibitory signals regulates the communication among different individuals. By taking advantage of a microfluidic device, we study the dynamics of arrays of diffusively coupled Belousov-Zhabotinsky (BZ) oscillators encapsulated in water-in-oil single emulsions. New synchronization patterns are induced and controlled by modulating the structural and chemical properties of the phospholipid-based biomimetic membranes via the introduction of specific dopants.

View Article and Find Full Text PDF

Surfactant stabilized water/oil/water (w/o/w) double emulsions have received much attention in the last years motivated by their wide applications. Among double emulsions, those stabilized by phospholipids present special interest for their imitation of artificial cells, allowing the study of the effect of confining chemical reactions in biomimetic environments. Upon evaporation of the oil shell, phospholipid stabilized double emulsions can also serve as templates for giant vesicles.

View Article and Find Full Text PDF

Magnetic nanoparticles are ideal candidates for biomedical applications given their potential use in magnetic resonance imaging, magnetic hyperthermia and targeted drug delivery. Understanding protein-nanoparticle interactions in the blood stream is of major importance due to their potential risks, especially immunogenicity (i.e.

View Article and Find Full Text PDF