Publications by authors named "Ali Abbaspour Tamijani"

Hypothesis: The interactions of organic molecules with mineral surfaces are influenced by several factors such as adsorbate speciation, surface atomic and electronic structure, and environmental conditions. When coupled with thermodynamic techniques, energetics from atomistic modeling can provide a molecular-level picture of which factors determine reactivity. This is paramount for evaluating the chemical processes which control the fate of these species in the environment.

View Article and Find Full Text PDF

Customized Cu(PO) and CuO nanosheets and commercial CuO nanoparticles were investigated for micronutrient delivery and suppression of soybean sudden death syndrome. An ab initio thermodynamics approach modelled how material morphology and matrix effects control the nutrient release. Infection reduced the biomass and photosynthesis by 70.

View Article and Find Full Text PDF

The inner-sphere adsorption of AsO, PO, and SO on the hydroxylated α-AlO(001) surface was modeled with the goal of adapting a density functional theory (DFT) and thermodynamics framework for calculating the adsorption energetics. While DFT is a reliable method for predicting various properties of solids, including crystalline materials comprised of hundreds (or even thousands) of atoms, adding aqueous energetics in heterogeneous systems poses steep challenges for modeling. This is in part due to the fact that environmentally relevant variations in the chemical surroundings cannot be captured atomistically without increasing the system size beyond tractable limits.

View Article and Find Full Text PDF