Publications by authors named "Ali A Nikooyan"

Spinal cord stimulation enhanced restoration of motor function following spinal cord injury (SCI) in unblinded studies. To determine whether training combined with transcutaneous electrical spinal cord stimulation (tSCS), with or without systemic serotonergic treatment with buspirone (busp), could improve hand function in individuals with severe hand paralysis following SCI, we assessed ten subjects in a double-blind, sham-controlled, crossover study. All treatments-busp, tSCS, and the busp plus tSCS-reduced muscle tone and spasm frequency.

View Article and Find Full Text PDF

Motor deficits are observed in Alzheimer's disease (AD) prior to the appearance of cognitive symptoms. To investigate the role of amyloid proteins in gait disturbances, we characterized locomotion in APP-overexpressing transgenic J20 mice. We used three-dimensional motion capture to characterize quadrupedal locomotion on a treadmill in J20 and wild-type mice.

View Article and Find Full Text PDF

Recent findings have demonstrated that reward feedback alone can drive motor learning. However, it is not yet clear whether reward feedback alone can lead to learning when a perturbation is introduced abruptly, or how a reward gradient can modulate learning. In this study, we provide reward feedback that decays continuously with increasing error.

View Article and Find Full Text PDF

There is currently no consensus in the literature on whether the magnitude of the ground reaction force or loading rate decreases or increases with muscle fatigue. In this article, the effects of lower extremity muscle fatigue on the magnitude of the ground reaction force and loading rate during running and drop landing are examined. Through a systematic search of the literature, 24 articles are identified that satisfy the inclusion criteria and study the relationship between fatigue and the ground reaction force variables during running, single-leg drop landing, and bilateral drop landing.

View Article and Find Full Text PDF

A modeling approach is used in this paper to study the effects of fatigue on the ground reaction force (GRF) and the vibrations of the lower extremity soft tissues. A recently developed multiple degrees-of-freedom mass-spring-damper model of the human body during running is used for this purpose. The model is capable of taking the muscle activity into account by using a nonlinear controller that tunes the mechanical properties of the soft-tissue package based on two physiological hypotheses, namely, "constant force" and "constant vibration.

View Article and Find Full Text PDF

Determination of an accurate glenohumeral-joint rotation center (GH-JRC) from marker data is essential for kinematic and dynamic analysis of shoulder motions. Previous studies have focused on the evaluation of the different functional methods for the estimation of the GH-JRC for healthy subjects. The goal of this paper is to compare two widely used functional methods, namely the instantaneous helical axis (IHA) and symmetrical center of rotation (SCoRE) methods, for estimating the GH-JRC in vivo for patients with implanted shoulder hemiarthroplasty.

View Article and Find Full Text PDF

This paper tries to improve a recently developed mass-spring-damper model of the human body during running. The previous model took the muscle activity into account using a nonlinear controller that tuned the mechanical properties of the soft-tissue package based on two physiological hypotheses, namely "constant-force" and "constant-vibration". Three cost functions were used, out of which one was based on the constant-force hypothesis and two others were based on the constant-vibration hypothesis.

View Article and Find Full Text PDF

Background: lower-limb stress fracture is one of the most common types of running injuries. There have been several studies focusing on the association between stress fractures and biomechanical factors. In the current study, the ground reaction force and loading rate are examined.

View Article and Find Full Text PDF

A previously developed mass-spring-damper model of the human body is improved in this paper, taking muscle activity into account. In the improved model, a nonlinear controller mimics the functionality of the Central Nervous System (CNS) in tuning the mechanical properties of the soft-tissue package. Two physiological hypotheses are used to determine the control strategies that are used by the controller.

View Article and Find Full Text PDF

This paper deals with the impact force during foot-ground impact activities such as the running. A previously developed model is used for this study. The model is a lumped-parameter one consisting of four masses connected to each other via linear springs and viscous dampers.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionvppouftnt9gsnuivrkr9kntkipefmjbn): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once