There are conflicted experimental results on the role of bone morphogenetic proteins (BMPs) in cancer. Some results suggest that BMPs act as tumor suppressors while other findings indicate that BMPs are oncogenic factors. In the present study, we aimed to investigate the association of BMP expression and the survival of breast cancer patients utilizing The Cancer Genome Atlas (TCGA).
View Article and Find Full Text PDFThe goal of this study was to determine whether MUC1 antibody conjugated with a fluorophore could be used to visualize pancreatic cancer. Anti-MUC1 (CT2) antibody was conjugated with 550 nm or 650 nm fluorophores. Nude mouse were used to make subcutaneous and orthotopic models of pancreatic cancer.
View Article and Find Full Text PDFBackground: Photoimmunotherapy (PIT) is based on the use of a monoclonal antibody specific to cancer epitopes conjugated to a photosensitizer near-infrared phthalocyanine dye (IR700). In this study, PIT with IR700 conjugated to anti-carcinoembryonic antigen (CEA) was used as an adjunct to surgery in orthotopically-implanted human pancreatic cancer in a nude mouse model to eliminate microscopic disease in the post-surgical tumor bed and prevent local as well as metastatic recurrence.
Materials And Methods: Athymic nude mice were orthotopically implanted with the human pancreatic cancer cell line BxPC3 expressing green fluorescent protein.
Photoimmunotherapy (PIT) of cancer utilizes tumor-specific monoclonal antibodies conjugated to a photosensitizer phthalocyanine dye IR700 which becomes cytotoxic upon irradiation with near infrared light. In this study, we aimed to evaluate the efficacy of PIT on human pancreatic cancer cells in vitro and in vivo in an orthotopic nude mouse model. The binding capacity of anti-CEA antibody to BxPC-3 human pancreatic cancer cells was determined by FACS analysis.
View Article and Find Full Text PDFUndescended parathyroid adenomas are rare, representing 0.08% of all parathyroid adenomas; however, they make up 7% of the underlying cause of failed cervical exploration in patients with persistent primary hyperparathyroidism. A 43-year-old woman with no significant medical or family history presented with fatigue and was diagnosed with primary hyperparathyroidism; however, preoperative imaging including sestamibi scan and ultrasound was unable to identify the hyperfunctioning gland.
View Article and Find Full Text PDFBackground And Objectives: Patient-derived orthotopic xenograft (PDOX) nude-mouse models replicate the behavior of clinical cancer, including metastasis. The objective of the study was to determine the efficacy of zoledronic acid (ZA) on metastasis of a patient-derived orthotopic xenograft (PDOX) nude-mouse model of pancreatic cancer.
Methods: In the present study, we examined the efficacy of ZA on pancreatic cancer growth and metastasis in a PDOX nude-mouse model.
Labeling of metastatic tumors can aid in their staging and resection of cancer. Near infrared (NIR) dyes have been used in the clinic for tumor labeling. However, there can be a nonspecific uptake of dye by the liver, lungs, and lymph nodes, which hinders detection of metastasis.
View Article and Find Full Text PDFWe report here that polyethylene glycol (PEG) linked to near infrared dyes conjugated to chimeric mouse-human anti-carcinoembryonic antigen (CEA) antibody greatly improves imaging of liver metastases in a nude mouse model of colon-cancer experimental metastases. PEGylated and non-PEGylated DyLight 650 and 750 dyes were conjugated to the chimeric anti-CEA antibody. The dyes were initially injected intravenously into nude mice without tumors.
View Article and Find Full Text PDFThe aim of this study was to evaluate a set of visible and near-infrared dyes conjugated to a tumor-specific chimeric antibody for high-resolution tumor imaging in orthotopic models of pancreatic cancer. BxPC-3 human pancreatic cancer was orthotopically implanted into pancreata of nude mice. Mice received a single intravenous injection of a chimeric anti-carcinoembryonic antigen antibody conjugated to one of the following fluorophores: 488-nm group (Alexa Fluor 488 or DyLight 488); 550-nm group (Alexa Fluor 555 or DyLight 550); 650-nm group (Alexa Fluor 660 or DyLight 650), or the 750-nm group (Alexa Fluor 750 or DyLight 755).
View Article and Find Full Text PDF