G protein-coupled receptors (GPCRs) are membrane-spanning transducers mediating the actions of numerous physiological ligands and drugs. The GPCR database GPCRdb supports a large global research community with reference data, analysis, visualization, experiment design and dissemination. Here, we describe our sixth major GPCRdb release starting with an overview of all resources for receptors and ligands.
View Article and Find Full Text PDFNADPH oxidase 5 (NOX5) catalyzes the production of superoxide free radicals and regulates physiological processes from sperm motility to cardiac rhythm. Overexpression of NOX5 leads to cancers, diabetes, and cardiovascular diseases. NOX5 is activated by intracellular calcium signaling, but the underlying molecular mechanism of which - in particular, how calcium triggers electron transfer from NADPH to FAD - is still unclear.
View Article and Find Full Text PDFG proteins are the major signal proteins of ∼800 receptors for medicines, hormones, neurotransmitters, tastants and odorants. GproteinDb offers integrated genomic, structural, and pharmacological data and tools for analysis, visualization and experiment design. Here, we present the first major update of GproteinDb greatly expanding its coupling data and structural templates, adding AlphaFold2 structure models of GPCR-G protein complexes and advancing the interactive analysis tools for their interfaces underlying coupling selectivity.
View Article and Find Full Text PDFGenerating active, pure, and monodisperse protein remains a major bottleneck for structural studies using X-ray crystallography and cryo-electron microscopy (cryo-EM). The current methodology heavily relies on overexpressing the recombinant protein fused with a histidine tag in conventional expression systems and evaluating the quality and stability of purified protein using size exclusion chromatography (SEC). This requires a large amount of protein and can be highly laborious and time consuming.
View Article and Find Full Text PDFG protein-coupled receptors (GPCRs) are physiologically abundant signaling hubs routing hundreds of extracellular signal substances and drugs into intracellular pathways. The GPCR database, GPCRdb supports >5000 interdisciplinary researchers every month with reference data, analysis, visualization, experiment design and dissemination. Here, we present our fifth major GPCRdb release setting out with an overview of the many resources for receptor sequences, structures, and ligands.
View Article and Find Full Text PDFPeptidoglycan (PG) is an essential component of the cell envelope in most bacteria, responsible for maintaining the shape of the cell and protecting the cell from environmental stresses. The growth of the PG layer during cell elongation and division is facilitated by the coordinated activities of PG synthases and hydrolases. PG synthases are regulated from inside the cell by components of the elongasome and divisome complexes driven by the cytoskeletal proteins MreB and FtsZ.
View Article and Find Full Text PDFProteins from the bacterial small multidrug resistance (SMR) family are proton-coupled exporters of diverse antiseptics and antimicrobials, including polyaromatic cations and quaternary ammonium compounds. The transport mechanism of the transporter, EmrE, has been studied extensively, but a lack of high-resolution structural information has impeded a structural description of its molecular mechanism. Here, we apply a novel approach, multipurpose crystallization chaperones, to solve several structures of EmrE, including a 2.
View Article and Find Full Text PDFOsteoporosis is a common bone disease that results in elevated risk of fracture, and delayed bone healing and impaired bone regeneration are implicated by this disease. In this study, Elastin/Polycaprolactone/nHA nanofibrous scaffold in combination with mesenchymal stem cells were used to regenerate bone defects. Cytotoxicity, cytocompatibility and cellular morphology were evaluated in vitro and observations revealed that an appropriate environment for cellular attachment, growth, migration, and proliferation is provided by this scaffold.
View Article and Find Full Text PDFMembrane proteins play critical physiological roles in all organisms, from ion transport and signal transduction to multidrug resistance. Elucidating their 3D structures is essential for understanding their functions, and this information can also be exploited for structure-aided drug discovery efforts. In this regard, X-ray crystallography has been the most widely used technique for determining the high-resolution 3D structures of membrane proteins.
View Article and Find Full Text PDFBy providing broad resistance to environmental biocides, transporters from the small multidrug resistance (SMR) family drive the spread of multidrug resistance cassettes among bacterial populations. A fundamental understanding of substrate selectivity by SMR transporters is needed to identify the types of selective pressures that contribute to this process. Using solid-supported membrane electrophysiology, we find that promiscuous transport of hydrophobic substituted cations is a general feature of SMR transporters.
View Article and Find Full Text PDFEscherichia coli is the workhorse of the structural biology lab. In addition to routine cloning and molecular biology, E. coli can be used as a factory for the production of recombinant membrane proteins.
View Article and Find Full Text PDFA growing body of evidence implicates the mycobacterial capsule, the outermost layer of the mycobacterial cell envelope, in modulation of the host immune response and virulence of mycobacteria. Mycobacteria synthesize the dominant capsule component, α(1→4)-linked glucan, via three interconnected and potentially redundant metabolic pathways. Here, we report the crystal structure of the TreS:Pep2 complex, containing trehalose synthase (TreS) and maltokinase (Pep2), which converts trehalose to maltose 1-phosphate as part of the TreS:Pep2-GlgE pathway.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
March 2018
The small multidrug resistance (SMR) family of membrane proteins is prominent because of its rare dual topology architecture, simplicity, and small size. Its best studied member, EmrE, is an important model system in several fields related to membrane protein biology, from evolution to mechanism. But despite decades of work on these multidrug transporters, the native function of the SMR family has remained a mystery, and many highly similar SMR homologs do not transport drugs at all.
View Article and Find Full Text PDF