Publications by authors named "Alharith A A Hassan"

Background/objectives: Films in the mouth offer a promising alternative drug delivery system for oral administration, with several advantages over traditional oral formulations. Furthermore, their non-invasive nature and easy administration make them conducive to increasing patient compliance. The use of active agents in these films can further improve their drug delivery properties, making them an even more useful drug delivery system.

View Article and Find Full Text PDF

The preparation of pellets using a high-shear granulator in a rapid single-step is considered a good economic alternative to the extrusion spheronization process. As process parameters and material attributes greatly affect pellet qualities, successful process optimization plays a vital role in producing pellet dosage forms with the required critical quality attributes. This study was aimed at the development and optimization of the pelletization technique with the Pro-CepT granulator.

View Article and Find Full Text PDF

Hydrophobic ion pairing (HIP) complexation was found to be an efficient approach in modulating the release and enhancing the stability and encapsulation of hydrophilic macromolecules such as proteins in hydrophobic nano/microcarriers. The present work strives to develop and optimize the preparation of the HIP complex of the antimicrobial enzyme lysozyme (LYZ) with the ion-pairing agent (IPA) sodium dodecyl sulphate (SDS) relying on the quality-by-design (QbD) approach. The quality target product profile (QTPP) includes the achievement of maximal lipophilicity in a reversible manner to enable the maintenance of biological activity.

View Article and Find Full Text PDF

Mucoadhesive buccal films have found increased popularity in pharmaceutical drug delivery due to the several advantages that they possess. The present study strives to develop and optimize chitosan-based mucoadhesive buccal films by relying on quality-by-design (QbD) principles. Previous knowledge and experience were employed to firstly identify the critical quality attributes (CQAs), followed by a thorough risk assessment, which led to the selection of seven critical material attributes and process parameters, namely, the polymer grade and concentration, the plasticizer type and concentration, the citric acid (CA) concentration, the amount of the casted solution, and the drying condition.

View Article and Find Full Text PDF