A simple and rapid method based on miniaturized solid-phase microextraction (mini-SPME) followed by gas chromatography-mass spectrometry was developed to identify eight endocrine disruptors (atrazine, diethylstilbestrol, hexestrol, estrone, estradiol, ethinylestradiol, norgestrel, and megestrel) in drinking water samples. Extraction parameters was optimized and further analyses was performed using them. The optimum temperature for the determination of endocrine disruptors in water was 80 °C; the optimum extraction and preincubation times were 60 and 20 min, respectively.
View Article and Find Full Text PDFIn this work, we employed a non-linear programming (NLP) approach via quantitative structure-retention relationships (QSRRs) modelling for prediction of elution order in reversed phase-liquid chromatography. With our rapid and efficient approach, error in prediction of retention time is sacrificed in favor of decreasing the error in elution order. Two case studies were evaluated: (i) analysis of 62 organic molecules on the Supelcosil LC-18 column; and (ii) analysis of 98 synthetic peptides on seven reversed phase-liquid chromatography (RP-LC) columns with varied gradients and column temperatures.
View Article and Find Full Text PDF