The understanding of mixed ionic-electronic conductivity in hybrid perovskites has enabled major advances in the development of optoelectronic devices based on this class of materials. While recent investigations revealed the potential of using dimensionality effects for various applications, the implication of this strategy on mixed conductivity is yet to be established. Here, we present a systematic analysis of mixed conduction in layered (2D) hybrid halide perovskite films based on 1,4-phenylenedimethylammonium (PDMA) and benzylammonium (BzA) organic spacers in (PDMA)PbI and (BzA)PbI compositions, forming representative Dion-Jacobson (DJ) and Ruddleson-Popper (RP) phases, respectively.
View Article and Find Full Text PDFOrganic materials can tune the optical properties in layered (2D) hybrid perovskites, although their impact on photophysics is often overlooked. Here, we use transient absorption spectroscopy to probe the Dion-Jacobson (DJ) and Ruddlesden-Popper (RP) 2D perovskite phases. We show the formation of charge transfer excitons in DJ phases, resulting in a photoinduced Stark effect which is shown to be dependent on the spacer size.
View Article and Find Full Text PDFLayered hybrid perovskites are based on organic spacers separating hybrid perovskite slabs. We employ arene and perfluoroarene moieties based on 1,4-phenylenedimethylammonium (PDMA) and its perfluorinated analogue (F-PDMA) in the assembly of hybrid layered Dion-Jacobson perovskite phases. The resulting materials are investigated by X-ray diffraction, UV-vis absorption, photoluminescence, and solid-state NMR spectroscopy to demonstrate the formation of layered perovskite phases.
View Article and Find Full Text PDFLayered Dion-Jacobson (DJ) and Ruddlesden-Popper (RP) hybrid perovskites are promising materials for optoelectronic applications due to their modular structure. To fully exploit their functionality, mechanical stimuli can be used to control their properties without changing the composition. However, the responsiveness of these systems to pressure compatible with practical applications (<1 GPa) remains unexploited.
View Article and Find Full Text PDFDion-Jacobson (DJ) iodoplumbates based on 1,4-phenylenedimethanammonium (PDMA) have recently emerged as promising light absorbers for perovskite solar cells. While PDMA is one of the simplest aromatic spacers potentially capable of forming a DJ structure based on (PDMA)A Pb I composition, the crystallographic proof has not been reported so far. Single crystal structure of a DJ phase based on PDMA is presented and high-field solid-state NMR spectroscopy is used to characterize the structure of PDMA-based iodoplumbates prepared as thin films and bulk microcrystalline powders.
View Article and Find Full Text PDFLayered hybrid perovskites based on Dion-Jacobson phases are of interest to various optoelectronic applications. However, the understanding of their structure-property relationships remains limited. Here, we present a systematic study of Dion-Jacobson perovskites based on (S)PbX ( = 1) compositions incorporating phenylene-derived aromatic spacers (S) with different anchoring alkylammonium groups and halides (X = I, Br).
View Article and Find Full Text PDF