Publications by authors named "Algamal Z"

Ionic liquids (ILs) have attracted considerable interest due to their unique properties and prospective uses in various industries. However, their potential toxicity, particularly regarding enzyme inhibition, has become a growing concern. In this study, a QSAR model was proposed to predict the enzyme inhibition toxicity of ILs.

View Article and Find Full Text PDF

The horse herd optimization algorithm (HOA), one of the more contemporary metaheuristic algorithms, has demonstrated superior performance in a number of challenging optimization tasks. In the present work, the descriptor selection issue is resolved by classifying different essential oil retention indices using the binary form, BHOA. Based on internal and external prediction criteria, Z-shape transfer functions (ZTF) were tested to verify their efficiency in improving BHOA performance in QSPR modelling for predicting retention indices of essential oils.

View Article and Find Full Text PDF

One of the recently developed metaheuristic algorithms, the coyote optimization algorithm (COA), has shown to perform better in a number of difficult optimization tasks. The binary form, BCOA, is used in this study as a solution to the descriptor selection issue in classifying diverse antifungal series. Z-shape transfer functions (ZTF) are evaluated to verify their efficiency in improving BCOA performance in QSAR classification based on classification accuracy (CA), the geometric mean of sensitivity and specificity (G-mean), and the area under the curve (AUC).

View Article and Find Full Text PDF

Feature selection techniques are considered one of the most important preprocessing steps, which has the most significant influence on the performance of data analysis and decision making. These FS techniques aim to achieve several objectives (such as reducing classification error and minimizing the number of features) at the same time to increase the classification rate. FS based on Metaheuristic (MH) is considered one of the most promising techniques to improve the classification process.

View Article and Find Full Text PDF

The development of a reliable quantitative structure-activity relationship (QSAR) classification model with a small number of molecular descriptors is a crucial step in chemometrics. In this study, an improvement of crow search algorithm (CSA) is proposed by adapting the opposite-based learning (OBL) approach, which is named as OBL-CSA, to improve the exploration and exploitation capability of the CSA in quantitative structure-biodegradation relationship (QSBR) modelling of classifying the biodegradable materials. The results reveal that the performance of OBL-CSA not only manifest in improving the classification performance, but also in reduced computational time required to complete the process when compared to the standard CSA and other four optimization algorithms tested, which are the particle swarm algorithm (PSO), black hole algorithm (BHA), grey wolf algorithm (GWA), and whale optimization algorithm (WOA).

View Article and Find Full Text PDF

The known linear regression model (LRM) is used mostly for modelling the QSAR relationship between the response variable (biological activity) and one or more physiochemical or structural properties which serve as the explanatory variables mainly when the distribution of the response variable is normal. The gamma regression model is employed often for a skewed dependent variable. The parameters in both models are estimated using the maximum likelihood estimator (MLE).

View Article and Find Full Text PDF

High-dimensionality is one of the major problems which affect the quality of the quantitative structure-activity relationship (QSAR) modelling. Obtaining a reliable QSAR model with few descriptors is an essential procedure in chemometrics. The binary grasshopper optimization algorithm (BGOA) is a new meta-heuristic optimization algorithm, which has been used successfully to perform feature selection.

View Article and Find Full Text PDF

One of the most challenging issues when facing a Quantitative structure-activity relationship (QSAR) classification model is to deal with the descriptor selection. Penalized methods have been adapted and have gained popularity as a key for simultaneously performing descriptor selection and QSAR classification model estimation. However, penalized methods have drawbacks such as having biases and inconsistencies that make they lack the oracle properties.

View Article and Find Full Text PDF

Linear regression model is frequently encountered in quantitative structure-activity relationship (QSAR) modelling. The traditional estimation of regression model parameters is based on the normal assumption of the response variable (biological activity) and therefore, it is sensitive to outliers or heavy-tailed distributions. Robust penalized regression methods have been given considerable attention because they combine the robust estimation method with penalty terms to perform QSAR parameter estimation and variable selection (descriptor selection) simultaneously.

View Article and Find Full Text PDF

Time-varying binary gravitational search algorithm (TVBGSA) is proposed for predicting antidiabetic activity of 134 dipeptidyl peptidase-IV (DPP-IV) inhibitors. To improve the performance of the binary gravitational search algorithm (BGSA) method, we propose a dynamic time-varying transfer function. A new control parameter, , is added in the original transfer function as a time-varying variable.

View Article and Find Full Text PDF

An improved binary differential search (improved BDS) algorithm is proposed for QSAR classification of diverse series of antimicrobial compounds against Candida albicans inhibitors. The transfer functions is the most important component of the BDS algorithm, and converts continuous values of the donor into discrete values. In this paper, the eight types of transfer functions are investigated to verify their efficiency in improving BDS algorithm performance in QSAR classification.

View Article and Find Full Text PDF

In cancer classification, gene selection is one of the most important bioinformatics related topics. The selection of genes can be considered to be a variable selection problem, which aims to find a small subset of genes that has the most discriminative information for the classification target. The penalized support vector machine (PSVM) has proved its effectiveness at creating a strong classifier that combines the advantages of the support vector machine and penalization.

View Article and Find Full Text PDF

Quantitative structure-activity relationship (QSAR) classification modelling with descriptor selection has become increasingly important because of the existence of large datasets in terms of either the number of compounds or the number of descriptors. Descriptor selection can improve the accuracy of QSAR classification studies and reduce their computation complexity by removing the irrelevant and redundant descriptors. In this paper, a two-stage classification approach is proposed by combining the minimum redundancy maximum relevancy criterion with the sparse support vector machine.

View Article and Find Full Text PDF
Article Synopsis
  • Gene selection is a key technique for enhancing classification results, but many existing methods struggle with issues like data outliers and inconsistencies.
  • This paper introduces a new Bayesian hierarchical model that includes a Bayesian Lasso method using a skewed Laplace distribution to address these challenges effectively.
  • Experimental comparisons on four benchmark gene expression datasets show that this new method outperforms existing approaches in selecting relevant genes and achieving high classification accuracy.
View Article and Find Full Text PDF

A penalized quantitative structure-property relationship (QSPR) model with adaptive bridge penalty for predicting the melting points of 92 energetic carbocyclic nitroaromatic compounds is proposed. To ensure the consistency of the descriptor selection of the proposed penalized adaptive bridge (PBridge), we proposed a ridge estimator ([Formula: see text]) as an initial weight in the adaptive bridge penalty. The Bayesian information criterion was applied to ensure the accurate selection of the tuning parameter ([Formula: see text]).

View Article and Find Full Text PDF

A robust screening approach and a sparse quantitative structure-retention relationship (QSRR) model for predicting retention indices (RIs) of 169 constituents of essential oils is proposed. The proposed approach is represented in two steps. First, dimension reduction was performed using the proposed modified robust sure independence screening (MR-SIS) method.

View Article and Find Full Text PDF

Descriptor selection is a procedure widely used in chemometrics. The aim is to select the best subset of descriptors relevant to the quantitative structure-activity relationship (QSAR) study being considered. In this paper, a new descriptor selection method for the QSAR classification model is proposed by adding a new weight inside L1-norm.

View Article and Find Full Text PDF

A high-dimensional quantitative structure-activity relationship (QSAR) classification model typically contains a large number of irrelevant and redundant descriptors. In this paper, a new design of descriptor selection for the QSAR classification model estimation method is proposed by adding a new weight inside L1-norm. The experimental results of classifying the anti-hepatitis C virus activity of thiourea derivatives demonstrate that the proposed descriptor selection method in the QSAR classification model performs effectively and competitively compared with other existing penalized methods in terms of classification performance on both the training and the testing datasets.

View Article and Find Full Text PDF

In high-dimensional quantitative structure-activity relationship (QSAR) modelling, penalization methods have been a popular choice to simultaneously address molecular descriptor selection and QSAR model estimation. In this study, a penalized linear regression model with L1/2-norm is proposed. Furthermore, the local linear approximation algorithm is utilized to avoid the non-convexity of the proposed method.

View Article and Find Full Text PDF

Cancer classification and gene selection in high-dimensional data have been popular research topics in genetics and molecular biology. Recently, adaptive regularized logistic regression using the elastic net regularization, which is called the adaptive elastic net, has been successfully applied in high-dimensional cancer classification to tackle both estimating the gene coefficients and performing gene selection simultaneously. The adaptive elastic net originally used elastic net estimates as the initial weight, however, using this weight may not be preferable for certain reasons: First, the elastic net estimator is biased in selecting genes.

View Article and Find Full Text PDF