Publications by authors named "Alfredo Trueba"

Article Synopsis
  • This research presents an AI model that optimizes energy supply, biocide dosing, and maintenance for heat exchangers, taking into account various environmental and economic factors.
  • The study finds that biofilm leads to a significant drop in thermal efficiency (41%) and increases flow resistance (113%), resulting in a 9% rise in pump power consumption.
  • The AI model identifies day 44 as the optimal time to start biocide dosing, helping to maintain heat exchanger performance while minimizing environmental impact from industrial operations.*
View Article and Find Full Text PDF

Ships in service feature surfaces that exhibit biofouling, which alters the hydrodynamics of the vessels, thus affecting their normal displacement and significantly increasing their fuel consumption. The application of three types of ceramic coatings as ecological, effective and durable alternatives to commercial silicone-based marine coatings is investigated in this study. Three different ceramic glazes and two control commercial paints are analysed in an actual environment during 20 months of exposure to simulate the navigation conditions such that growth and roughness data can be obtained and then applied to computational fluid dynamics (CFD) software using an open-source Reynolds-averaged Navier-Stokes solver.

View Article and Find Full Text PDF

A novel efficiency reduction model to tubular heat exchanger based on heat transfer losses by biofilm adhesion is proposed, which included a modified equation based on the real data-dependent time, seawater, hydrodynamics and heat transfer resistance using computational fluid dynamics (CFD). The biofilm growth model based on Verhulst model and experimental data has been obtained and simulated in a CFD software tool to analyze the tubular heat exchanger performance prediction cooled by seawater. The biofilm CFD model with appropriate fit, and the correlation coefficient (R2) values are between 0.

View Article and Find Full Text PDF

Fouling growth in brackish water distribution systems (BWDS), especially calcium-silica fouling, is inevitable issue in brackish water desalination, chemical and agricultural industry, eventually threaten the cleaner production process and environment. Magnetic Field (MF) has been a greener and effective technology to control calcium carbonate fouling. However, the effects of MF on composite calcium-silica fouling are still elusive.

View Article and Find Full Text PDF

A CUSUM chart method is presented as an alternative tool for continuous monitoring of an electromagnetic field-based (EMF) antifouling (AF) treatment of a heat exchanger cooled by seawater. During an initial experimental phase, biofilm growth was allowed in a heat exchanger formed of four tubes until sufficient growth had been established. In two of the tubes, continuous EMF treatment was then applied.

View Article and Find Full Text PDF

The present study evaluated biofilm growth in AISI 316L stainless steel tubes for seawater-cooled exchanger-condensers that had four different arithmetic mean surface roughness values ranging from 0.14 μm to 1.2 μm.

View Article and Find Full Text PDF

This study quantitatively evaluates the antifouling action of the continuous physical treatment with electromagnetic fields (EMFs) of seawater used as heat exchanger fluid in an open rack vaporizer (ORV) pilot plant to reduce the growth of biofouling on external rib-tube surfaces. The results demonstrate that the biofilm adhered on the treated rib-tubes was reduced by 33% in thickness and by 44% in dissolved solids regarding the biofilm adhered on the untreated control rib-tubes. The lower conductivity and Ca(2+) and Mg(2+) ionic content in the effluent of the treated seawater confirmed that the EMFs accelerated the process of ionic calcium nucleation and precipitation as calcium carbonate.

View Article and Find Full Text PDF

The influence of flow velocity (FV) on the heat transfer process in tubes made from AISI 316L stainless steel in a heat exchanger-condenser cooled by seawater was evaluated based on the characteristics of the resulting biofilm that adhered to the internal surface of the tubes at velocities of 1, 1.2, 1.6, and 3 m s(-1).

View Article and Find Full Text PDF

This article discusses the antifouling action of a continuous physical treatment process comprising the application of electromagnetic fields (EMFs) to seawater used as the refrigerant fluid in a heat exchanger-condenser to maintain the initial 'clean tube' condition. The results demonstrated that the EMFs accelerated the ionic nucleation of calcium and precipitation as calcium carbonate, which weakened the growing biofilm and reduced its adhesion capacity. Consequently, EMFs induced an erosive effect that reduced biofilm formation and fouling.

View Article and Find Full Text PDF

Electromagnetic field (EMF) treatment is presented as an alternative physical treatment for the mitigation of biofouling adhered to the tubes of a heat exchanger-condenser cooled by seawater. During an experimental phase, a fouling biofilm was allowed to grow until experimental variables indicated that its growth had stabilised. Subsequently, EMF treatment was applied to seawater to eliminate the biofilm and to maintain the achieved cleanliness.

View Article and Find Full Text PDF

The effectiveness of two quaternary ammonium compounds (QACs) (non-oxidising biocides) to reduce the growth of biofilm adhering to the tubes of a heat exchanger-condenser cooled by seawater was evaluated. Their effectiveness was compared to that of a conventional oxidising biocide (sodium hypochlorite [NaOCl]) under the same testing conditions. Each biocide was applied intermittently (6 h on, 6 h off) in a first shock stage (1.

View Article and Find Full Text PDF

Biofouling is one of the most important problems associated with heat exchangers, leading to a loss of thermal performance in their cycle. To maintain them in optimum working condition, biofouling must be kept under control and, to do so, instrumentation is required for its monitoring. The development of the biofouling layer can be qualitatively followed, but only during maintenance shutdown periods is it possible to attain a quantitative assessment.

View Article and Find Full Text PDF

Biofouling is one of the most serious problems facing numerous industrial processes. In the case of a heat exchanger unit, biological deposits adhering to the inside surface of its tubes reduce heat transfer and, thus, the thermal performance of the cycle. Control of this phenomenon is proving fundamental for both land and marine equipment to operate in optimum working conditions.

View Article and Find Full Text PDF