In order to understand the influence of the morphological properties of graphene materials on the electrochemical performance of electrodes for lithium-ion batteries, three different graphene nanoplatelets with the increasing specific surface area (NP1: 296 m g, NP2: 470 m g, and NP3: 714 m g) were added in the electrode formulation in different ratios. Higher specific surface area graphene nanoplatelets (NP3) exhibit reversible capacity up to 505 mA h g in the first discharge cycle (29.5% higher than that of graphite).
View Article and Find Full Text PDFWearable sensors for non-invasive monitoring constitute a growing technology in many industrial fields, such as clinical or sport monitoring. However, one of the main challenges in wearable sensing is the development of bioelectrodes via the use of flexible and stretchable materials capable of maintaining conductive and biocompatible properties simultaneously. In this study, chitosan-carbon black (CH-CB) membranes have been synthesized using a straightforward and versatile strategy and characterized in terms of their composition and their electrical and mechanical properties.
View Article and Find Full Text PDFSensorless speed estimation has been extensively studied for its use in control schemes. Nevertheless, it is also a key step when applying Motor Current Signature Analysis to induction motor diagnosis: accurate speed estimation is vital to locate fault harmonics, and prevent false positives and false negatives, as shown at the beginning of the paper through a real industrial case. Unfortunately, existing sensorless speed estimation techniques either do not provide enough precision for this purpose or have limited applicability.
View Article and Find Full Text PDFPiezoelectric polymer cellular films have been developed and improved in the past decades. These piezoelectric materials are based on the polarization of the internal cells by means of induced discharges in the gas inside the cells. Internal discharges are driven by an external applied electric field.
View Article and Find Full Text PDFThis article consists of a review of the main concepts and paradigms established in the field of biological fuel cells or biofuel cells. The aim is to provide an overview of the current panorama, basic concepts, and methodologies used in the field of enzymatic biofuel cells, as well as the applications of these bio-systems in flexible electronics and implantable or portable devices. Finally, the challenges needing to be addressed in the development of biofuel cells capable of supplying power to small size devices with applications in areas related to health and well-being or next-generation portable devices are analyzed.
View Article and Find Full Text PDFSustainable activated carbon can be obtained from the pyrolysis/activation of biomass wastes coming from different origins. Carbon obtained in this way shows interesting properties, such as high surface area, electrical conductivity, thermal and chemical stability, and porosity. These characteristics among others, such as a tailored pore size distribution and the possibility of functionalization, lead to an increased use of activated carbons in catalysis.
View Article and Find Full Text PDFInduction motors are essential and widely used components in many industrial processes. Although these machines are very robust, they are prone to fail. Nowadays, it is a paramount task to obtain a reliable and accurate diagnosis of the electric motor health, so that a subsequent reduction of the required time and repairing costs can be achieved.
View Article and Find Full Text PDF