Antibiotic resistance refers to when microorganisms survive and grow in the presence of specific antibiotics, a phenomenon mainly related to the indiscriminate widespread use and abuse of antibiotics. In this framework, thanks to the design and fabrication of original functional nanomaterials, nanotechnology offers a powerful weapon against several diseases such as cancer and pathogenic illness. Smart nanomaterials, such as metallic nanoparticles and semiconductor nanocrystals, enable the realization of novel drug-free medical therapies for fighting against antibiotic-resistant bacteria.
View Article and Find Full Text PDFPlasmonic metallic nanoparticles (NPs) represent a relevant class of nanomaterials, which is able to achieve light localization down to nanoscale by exploiting a phenomenon called Localized Plasmon Resonance. In the last few years, NPs have been proposed to trigger DNA release or enhance ablation of diseased tissues, while minimizing damage to healthy tissues. In view of the therapeutic relevance of such plasmonic NPs; a detailed characterization of the electrostatic interaction between positively charged gold nanorods (GNRs) and a negatively charged whole-genome DNA solution is reported.
View Article and Find Full Text PDFMultifunctional colloidal micro and nano-particles with controlled architectures have very promising properties for applications in bio and nanotechnologies. Here we report on the unique dichotomous dynamical behaviour of chiral spherical microparticles, either fluid or solid, manipulated by polarized optical tweezers. The particles are created using a reactive mesogen mixed with a chiral dopant to form cholesteric liquid crystal droplets in water emulsion.
View Article and Find Full Text PDFWe report an optical switch based on a diffraction grating by combining PDMS microstructures with a photo-responsive Nematic Liquid Crystal (NLC). The grating was realized via replica molding and was subsequently coated with a thin SiO layer. SiO induced a full planar alignment of the liquid crystal.
View Article and Find Full Text PDFSolid chiral microspheres with unique and multifunctional optical properties are produced from cholesteric liquid crystal-water emulsions using photopolymerization processes. These self-organizing microspheres exhibit different internal configurations of helicoidal structures with radial, conical or cylindrical geometries, depending on the physicochemical characteristics of the precursor liquid crystal emulsion.
View Article and Find Full Text PDF