Publications by authors named "Alfredo M Morales"

We present an on-chip microfluidic sample concentrator and detection triggering system for microparticles based on a combination of insulator-based dielectrophoresis (iDEP) and electrical impedance measurement. This platform operates by first using iDEP to selectively concentrate microparticles of interest based on their electrical and physiological characteristics in a primary fluidic channel; the concentrated microparticles are then directed into a side channel configured for particle detection using electrical impedance measurements with embedded electrodes. This is the first study showing iDEP concentration with subsequent sample diversion down an analysis channel and is the first to demonstrate iDEP in the presence of pressure driven flow.

View Article and Find Full Text PDF

We demonstrate a new method for joining thermoplastic surfaces to produce microfluidic devices. The method takes advantage of the sharply defined permeation boundary of case-II diffusion to generate dimensionally controlled, activated bonding layers at the surfaces being joined. The technique is capable of producing bonds that exhibit cohesive failure, while preserving the fidelity of fine features in the bonding interface.

View Article and Find Full Text PDF

Efficient and robust particle separation and enrichment techniques are critical for a diverse range of lab-on-a-chip analytical devices including pathogen detection, sample preparation, high-throughput particle sorting, and biomedical diagnostics. Previously, using insulator-based dielectrophoresis (iDEP) in microfluidic glass devices, we demonstrated simultaneous particle separation and concentration of various biological organisms, polymer microbeads, and viruses. As an alternative to glass, we evaluate the performance of similar iDEP structures produced in polymer-based microfluidic devices.

View Article and Find Full Text PDF