Publications by authors named "Alfredo Levy Yeyati"

One of the most promising approaches towards large-scale quantum computation uses devices based on many Josephson junctions. Yet, even today, open questions regarding the single junction remain unsolved, such as the detailed understanding of the quantum phase transitions, the coupling of the Josephson junction to the environment or how to improve the coherence of a superconducting qubit. Here we design and build an engineered on-chip reservoir connected to a Josephson junction that acts as an efficient bolometer for detecting the Josephson radiation under non-equilibrium, that is, biased conditions.

View Article and Find Full Text PDF

Understanding heating and cooling mechanisms in mesoscopic superconductor-semiconductor devices is crucial for their application in quantum technologies. Owing to their poor thermal conductivity, heating effects can drive superconducting-to-normal transitions even at low bias, observed as sharp conductance dips through the loss of Andreev excess currents. Tracking such dips across magnetic field, cryostat temperature, and applied microwave power allows us to uncover cooling bottlenecks in different parts of a device.

View Article and Find Full Text PDF

The Josephson junction is a building block of quantum circuits. Its behavior, well understood when treated as an isolated entity, is strongly affected by coupling to an electromagnetic environment. In 1983, Schmid predicted that a Josephson junction shunted by a resistance exceeding the resistance quantum R = h/4e ≈ 6.

View Article and Find Full Text PDF

Two-dimensional electronic states at surfaces are often observed in simple wide-band metals such as Cu or Ag (refs. ). Confinement by closed geometries at the nanometre scale, such as surface terraces, leads to quantized energy levels formed from the surface band, in stark contrast to the continuous energy dependence of bulk electron bands.

View Article and Find Full Text PDF

Bound states in superconductors are expected to exhibit a spatially resolved electron-hole asymmetry which is the hallmark of their quantum nature. This asymmetry manifests as oscillations at the Fermi wavelength, which is usually tiny and thus washed out by thermal broadening or by scattering at defects. Here we demonstrate theoretically and confirm experimentally that, when coupled to magnetic impurities, bound states in a vortex core exhibit an emergent axial electron-hole asymmetry on a much longer scale, set by the coherence length.

View Article and Find Full Text PDF

The Coulomb drag effect has been observed as a tiny current induced by both electron-hole asymmetry and interactions in normal coupled quantum dot devices. In the present work we show that the effect can be boosted by replacing one of the normal electrodes by a superconducting one. Moreover, we show that at low temperatures and for sufficiently strong coupling to the superconducting lead, the Coulomb drag is dominated by Andreev processes, is robust against details of the system parameters, and can be controlled with a single gate voltage.

View Article and Find Full Text PDF

Quantum fluctuations are imprinted with valuable information about transport processes. Experimental access to this information is possible, but challenging. We introduce the dynamical Coulomb blockade (DCB) as a local probe for fluctuations in a scanning tunneling microscope (STM) and show that it provides information about the conduction channels.

View Article and Find Full Text PDF

Majorana modes emerge in non-trivial topological phases at the edges of specific materials such as proximitized semiconducting nanowires under an external magnetic field. Ideally, they are non-local states that are charge-neutral superpositions of electrons and holes. However, in nanowires of realistic length their wave functions overlap and acquire a finite charge that makes them susceptible to interactions, specifically with the image charges that arise in the electrostatic environment.

View Article and Find Full Text PDF

We present a theoretical analysis of the equilibrium Josephson current-phase relation in hybrid devices made of conventional -wave spin-singlet superconductors (S) and topological superconductor (TS) wires featuring Majorana end states. Using Green's function techniques, the topological superconductor is alternatively described by the low-energy continuum limit of a Kitaev chain or by a more microscopic spinful nanowire model. We show that for the simplest S-TS tunnel junction, only the -wave pairing correlations in a spinful TS nanowire model can generate a Josephson effect.

View Article and Find Full Text PDF

We investigate tunneling between two spinful Tomonaga-Luttinger liquids (TLLs) realized, e.g., as two crossed nanowires or quantum Hall edge states.

View Article and Find Full Text PDF

Spin-orbit interaction provides a spin filtering effect in carbon nanotube based Cooper pair splitters that allows us to determine spin correlators directly from current measurements. The spin filtering axes are tunable by a global external magnetic field. By a bending of the nanotube, the filtering axes on both sides of the Cooper pair splitter become sufficiently different that a test of entanglement of the injected Cooper pairs through a Bell-like inequality can be implemented.

View Article and Find Full Text PDF

We suggest a way to characterize the coherence of the split Cooper pairs emitted by a double-quantum-dot based Cooper pair splitter (CPS), by studying the radiative response of such a CPS inside a microwave cavity. The coherence of the split pairs manifests in a strongly nonmonotonic variation of the emitted radiation as a function of the parameters controlling the coupling of the CPS to the cavity. The idea to probe the coherence of the electronic states using the tools of cavity quantum electrodynamics could be generalized to many other nanoscale circuits.

View Article and Find Full Text PDF

We present shot noise measurements on Au nanowires showing very pronounced vibration-mode features. In accordance to recent theoretical predictions the sign of the inelastic signal, i.e.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionk25thiksuub8c6hijp04aa1ok4kojjva): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once