Publications by authors named "Alfredo Celedon"

Detection of microbial nucleic acids in body fluids has become the preferred method for rapid diagnosis of many infectious diseases. However, culture-based diagnostics that are time-consuming remain the gold standard approach in certain cases, such as sepsis. New culture-free methods are urgently needed.

View Article and Find Full Text PDF

Cytotoxicity assessments of nanomaterials, such as silver nanoparticles, are challenging due to interferences with test reagents and indicators as well uncertainties in dosing as a result of the complex nature of nanoparticle intracellular accumulation. Furthermore, current theories suggest that silver nanoparticle cytotoxicity is a result of silver nanoparticle dissolution and subsequent ion release. This study introduces a novel technique, nanoparticle associated cytotoxicity microscopy analysis (NACMA), which combines fluorescence microscopy detection using ethidium homodimer-1, a cell permeability marker that binds to DNA after a cell membrane is compromised (a classical dead-cell indicator dye), with live cell time-lapse microscopy and image analysis to simultaneously investigate silver nanoparticle accumulation and cytotoxicity in L-929 fibroblast cells.

View Article and Find Full Text PDF

The mechanical response of the cytoplasm was investigated by the intracellular implantation of magnetic nanorods and exposure to low-frequency rotatory magnetic fields. Nanorods (Pt-Ni, ∼200 nm diameter) fabricated by electrodeposition in templates of porous alumina with lengths of approximately 2 and 5 µm were inserted into NIH/3T3 fibroblasts and manipulated with a rotational magnetic field. Nanorod rotation was observed only for torques greater than 3.

View Article and Find Full Text PDF

Cells often migrate in vivo in an extracellular matrix that is intrinsically three-dimensional (3D) and the role of actin filament architecture in 3D cell migration is less well understood. Here we show that, while recently identified linkers of nucleoskeleton to cytoskeleton (LINC) complexes play a minimal role in conventional 2D migration, they play a critical role in regulating the organization of a subset of actin filament bundles - the perinuclear actin cap - connected to the nucleus through Nesprin2giant and Nesprin3 in cells in 3D collagen I matrix. Actin cap fibers prolong the nucleus and mediate the formation of pseudopodial protrusions, which drive matrix traction and 3D cell migration.

View Article and Find Full Text PDF

The organization of chromatin in the cell nucleus is crucial for gene expression regulation. However, physically probing the nuclear interior is challenging because high forces have to be applied using minimally invasive techniques. Here, magnetic nanorods embedded in the nucleus of living cells are subjected to controlled rotational forces, producing micron-sized displacements in the nuclear interior.

View Article and Find Full Text PDF

A growing number of nanotechnologies involve rotating particles. Because the particles are normally close to a solid surface, hydrodynamic interaction may affect particle rotation. Here, we track probes composed of two particles tethered to a solid surface by a DNA molecule to measure for the first time the effect of a surface on the rotational viscous drag.

View Article and Find Full Text PDF

Whether the bend and twist mechanics of DNA molecules are coupled is unclear. Here, we report the direct measurement of the resistive torque of single DNA molecules to study the effect of ethidium bromide (EtBr) intercalation and pulling force on DNA twist mechanics. DNA molecules were overwound and unwound using recently developed magnetic tweezers where the molecular resistive torque was obtained from Brownian angular fluctuations.

View Article and Find Full Text PDF

Focal adhesions are large multi-protein assemblies that form at the basal surface of cells on planar dishes, and that mediate cell signalling, force transduction and adhesion to the substratum. Although much is known about focal adhesion components in two-dimensional (2D) systems, their role in migrating cells in a more physiological three-dimensional (3D) matrix is largely unknown. Live-cell microscopy shows that for cells fully embedded in a 3D matrix, focal adhesion proteins, including vinculin, paxillin, talin, alpha-actinin, zyxin, VASP, FAK and p130Cas, do not form aggregates but are diffusely distributed throughout the cytoplasm.

View Article and Find Full Text PDF

Torsional stress in linear biopolymers such as DNA and chromatin has important consequences for nanoscale biological processes. We have developed a new method to directly measure torque on single molecules. Using a cylindrical magnet, we manipulate a novel probe consisting of a nanorod with a 0.

View Article and Find Full Text PDF

Mesenchymal cell migration through a three-dimensional (3D) matrix typically involves major matrix remodeling. The direction of matrix deformation occurs locally in all three dimensions, which cannot be measured by current techniques. To probe the local, 3D, real-time deformation of a collagen matrix during tumor cell migration, we developed an assay whereby matrix-embedded beads are tracked simultaneously in all three directions with high resolution.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Notice

Message: fwrite(): Write of 34 bytes failed with errno=28 No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 272

Backtrace:

A PHP Error was encountered

Severity: Warning

Message: session_write_close(): Failed to write session data using user defined save handler. (session.save_path: /var/lib/php/sessions)

Filename: Unknown

Line Number: 0

Backtrace: