Int J Phytoremediation
November 2024
Soil pollution with petroleum products is an urgent public health and environmental problem. Therefore, innovative solutions for cleaning soils contaminated with petroleum products are needed. One such solution is rhizodegradation, which is recognized as a sustainable and effective method of soil remediation.
View Article and Find Full Text PDFThis study aimed at elucidating the long-term efficiency of soil remediation where chemical stabilization of arsenic (As) contaminated soil using zerovalent iron (Fe) amendments was applied. A combination of chemical extraction and extended X-Ray absorption fine structure (EXAFS) spectroscopy technique was applied on soils collected from five laboratory and field experiments in Sweden and France. All soils were treated with 1 wt% of zerovalent Fe grit 2-15 years prior to the sampling.
View Article and Find Full Text PDFThe aim of this study was to compare the immobilisation of metal(loid)s in two differently contaminated soils using micro zerovalent iron (ZVI) and nano zerovalent iron (nZVI) particles. Chromated copper arsenate-contaminated soil contained high amounts of As, Cu, Cr, and Zn, whereas mining-contaminated soil contained high amounts of As, Cu, and Pb. Contaminated soils were amended using 2% ZVI and nZVI.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
August 2019
Hydrothermal carbonisation (HTC) is a wet and relatively low-temperature process where, under autogenous pressures, biomass undergoes a chain of reactions leading to the defragmentation of organic matter. As well as its other uses (e.g.
View Article and Find Full Text PDFThis study firstly aimed to investigate the potential of simultaneous metal (loid) removal from metal (oid) solution through adsorption on iron-peat, where the sorbent was made from peat and Fe by-products. Up-flow columns filled with the prepared sorbent were used to treat water contaminated with As, Cu, Cr, and Zn. Peat effectively adsorbed Cr, Cu, and Zn, whereas approximately 50% of inlet As was detected in the eluent.
View Article and Find Full Text PDFThis study aimed at combining iron and peat to produce a sorbent suitable for a simultaneous removal of cations and anions from a solution. Peat powder, an industrial residue, was coated with iron by immersing peat into iron salt solutions. The adsorption efficiency of the newly produced sorbent towards As, Cr, Cu and Zn was tested by means of batch adsorption experiments at a constant pH value of 5.
View Article and Find Full Text PDF