Publications by authors named "Alfred Y Lee"

Single-crystal X-ray diffraction (SCXRD) is the preferred and most accurate technique for determining molecular structures. However, it can present challenges when dealing with specific small molecules and active pharmaceutical ingredients (APIs), as many do not form quality crystals without coformers or can be unstable. In this study, we introduce tetrakis(guanidinium) pyrenetetrasulfonate (GPYR), a robust guanidinium-organosulfonate (GS) framework that efficiently encapsulates small molecules and APIs rich in functional groups.

View Article and Find Full Text PDF

Crystal polymorphism, characterized by different packing arrangements of the same compound, strongly ties to the physical properties of a molecule. Determining the polymorphic landscape is complex and time-consuming, with the number of experimentally observed polymorphs varying widely from molecule to molecule. Furthermore, disappearing polymorphs, the phenomenon whereby experimentally observed forms cannot be reproduced, pose a significant challenge for the pharmaceutical industry.

View Article and Find Full Text PDF

Single crystal X-ray diffraction (SCXRD) is arguably the most definitive method for molecular structure determination, but it is often challenged by compounds that are liquids or oils at room temperature or do not form crystals adequate for analysis. Our laboratory previously reported a simple, cost-effective, single-step crystallization method based on guanidinium organosulfonate (GS) hydrogen bonded frameworks for structure determination of a wide range of encapsulated guest molecules, including assignment of the absolute configuration of chiral centers. Herein, we expand on those results and report a head-to-head comparison of the GS method with adamantoid "molecular chaperones", which have been reported to be useful hosts for structure determination.

View Article and Find Full Text PDF

During the past three decades, the ability of guanidinium arenesulfonate host frameworks to encapsulate a wide range of guests has been amply demonstrated, with more than 700 inclusion compounds realized. Herein, we report crystalline inclusion compounds based on a new aliphatic host, guanidinium cyclohexanemonosulfonate, which surprisingly exhibits four heretofore unobserved architectures, as described by the projection topologies of the organosulfonate residues above and below hydrogen-bonded guanidinium sulfonate sheets. The inclusion compounds adopt a layer motif of guanidinium sulfonate sheets interleaved with guest molecules, resembling a mille-feuille pastry.

View Article and Find Full Text PDF

Herein we report the use of tetrakis (guanidinium) pyrenetetrasulfonate (GPYR) and bis (guanidinium) 1,5-napthalene disulfonate (GNDS) to catalyze the cyclization of 2-cyanobenzamide (1) to isoindolone (2). Moreover, we demonstrate the remarkable selectivity of these guanidinium organosulfonate hosts in encapsulating 2 over 1. By thoroughly investigating the intramolecular cyclization reaction, we determined that guanidinium and the organosulfonate moiety acts as the catalyst in this process.

View Article and Find Full Text PDF
Article Synopsis
  • - The physicochemical properties of molecular crystals, such as solubility and stability, are influenced by their specific crystal forms, making form selection crucial in their application.
  • - Recent advances in free-energy calculations have improved the accuracy and reliability of predicting crystal forms, establishing a benchmark for comparing different solid-state structures like hydrates and anhydrates.
  • - These advancements help bridge the gap between experimental techniques and computational methods, allowing for more reliable predictions in crystal structure selection that can guide experimentalists in their research.
View Article and Find Full Text PDF

Crystal structure prediction (CSP) is an invaluable tool in the pharmaceutical industry because it allows to predict all the possible crystalline solid forms of small-molecule active pharmaceutical ingredients. We have used a CSP-based cocrystal prediction method to rank ten potential cocrystal coformers by the energy of the cocrystallization reaction with an antiviral drug candidate, MK-8876, and a triol process intermediate, 2-ethynylglyclerol. For MK-8876, the CSP-based cocrystal prediction was performed retrospectively and successfully predicted the maleic acid cocrystal as the most likely cocrystal to be observed.

View Article and Find Full Text PDF

Although the crystal structures of small-molecule compounds are often determined from single-crystal X-ray diffraction (scXRD), recent advances in three-dimensional electron diffraction (3DED) and crystal structure prediction (CSP) methods promise to expand the structure elucidation toolbox available to the crystallographer. Herein, a comparative assessment of scXRD, 3DED, and CSP in combination with powder X-ray diffraction is carried out on two former drug candidate compounds and a multicomponent crystal of a key building block in the synthesis of gefapixant citrate.

View Article and Find Full Text PDF

Solid-state disorders of active pharmaceutical ingredients have been characterized by means of X-ray diffraction techniques and solid-state nuclear magnetic resonance spectroscopy. The results determined that the pleuromutilin-derivative, I, displays a unique continuous conformational disorder while retaining its long-range crystalline structure. The propionic acid (PA) version of this compound displayed partial crystalline order and site disorder of PA, depending on the quantity of PA incorporated in the structure.

View Article and Find Full Text PDF

Polymorphism in molecular crystals is a prevalent phenomenon and is of great interest to the pharmaceutical community. The solid-state form is a key quality attribute of a crystalline product. Inconsistencies in the solid phase produced during the manufacturing and storage of drug substances and drug products may have severe consequences.

View Article and Find Full Text PDF

Crystallization is vital to many processes occurring in nature and in the chemical, pharmaceutical, and food industries. Notably, crystallization is an attractive isolation step for manufacturing because this single process combines both particle formation and purification. Almost all of the products based on fine chemicals, such as dyes, explosives, and photographic materials, require crystallization in their manufacture, and more than 90% of all pharmaceutical products contain bioactive drug substances and excipients in the crystalline solid state.

View Article and Find Full Text PDF

Solution crystallization is an important separation and purification process used in the chemical, pharmaceutical and food industries. The quality of a crystalline product is generally judged by four main criteria: purity, crystal habit, particle size and solid form. Consistent production of the desired polymorph is crucial as the unanticipated emergence of a different crystal form may have severe consequences.

View Article and Find Full Text PDF

Purpose: The aim of this paper is to demonstrate that multiple crystal forms can be generated on patterned self-assembled monolayers (SAMs) substrates in single experiments in a given solvent system.

Methods: Functionalized metallic islands are fabricated and utilized as individual templates for crystal formation. Taking advantage of the different wetting properties that patterned surfaces offered, arrays of small solution droplets on the nano- and pico- liter scale were produced on the substrates.

View Article and Find Full Text PDF

Patterned glycine crystals nucleated on functionalized metallic square islands. This approach can be used to fabricate particles with micron dimensions and screen solid forms under different conditions. The size of the glycine crystals is controlled by the dimensions of the islands.

View Article and Find Full Text PDF

The interactions of antifreeze protein (AFP) type I, antifreeze glycoproteins, polyvinyl pyrrolidone (PVP), and various amino acids with ice are investigated using Cerius2, a molecular modelling tool. Binding energies of these additives to a major ice crystal face {001} are computed. Binding energy comparison of threonine molecules (by themselves) and as threonine residues within AFP type I demonstrate their role in improving AFP's binding ability to the ice crystal face.

View Article and Find Full Text PDF