Publications by authors named "Alfred Steffen"

In the present work, on-chip capillary electrophoresis for the separation of neuromediators is demonstrated. The influence of separation buffer (composition, pH, SDS additive), on-chip electrokinetic sample stacking, and surface pretreatment of the PDMS-PDMS and hybrid PDMS-glass devices on the electrokinetic characteristics of microfluidics (nu(eo), mu(eo), zeta) and separation performance of on-chip capillary electrophoresis of neuromediators have been investigated. It is demonstrated that for the effective separation of neuropeptides on elastomer-based microfluidic devices, on-chip sample stacking is necessary.

View Article and Find Full Text PDF

Functional coupling of reconstructed neuronal networks with microelectronic circuits has potential for the development of bioelectronic devices, pharmacological assays and medical engineering. Modulation of the signal processing properties of on-chip reconstructed neuronal networks is an important aspect in such applications. It may be achieved by controlling the biochemical environment, preferably with cellular resolution.

View Article and Find Full Text PDF

Poly(dimethylsiloxane) (PDMS)-PDMS and hybrid PDMS-glass devices have been characterized and compared in terms of current-voltage linearity, contact angle, electroosmotic velocity, electroosmotic mobility, and electrokinetic potential in dependence on the surface treatment. The hybrid PDMS-glass microfluidic devices have further been tested as on-chip capillary electrophoresis systems for the separation of fluorescently labeled amino acids. It has been demonstrated that different methods of surface pretreatment of the PDMS-glass devices result in significantly different separation performance, with plate numbers varying from 650 to 57 000 in dependence on the surface state and the nature of the amino acids.

View Article and Find Full Text PDF