Publications by authors named "Alfred Rossner"

Oxidation and removal of organic micropollutants (OMPs) on ultrapure (UPW) and natural water (NW) by ozone (O) and ozone/powdered activated carbon (O/PAC) have been studied. The OMPs atrazine (ATZ, herbicide), carbamazepine (CBZ, anticonvulsant), diclofenac (DCL, anti-inflammatory) and triclosan (TCS, antimicrobial) are incorporated continuously and uncontrolled on water treatment systems (e.g.

View Article and Find Full Text PDF

Organic micropollutants (OMPs) are ubiquitous in natural waters even in places where the human activity is limited. The presence of OMPs in natural water sources for human consumption encourages the evaluation of different water purification technologies to ensure water quality. In this study, the Biobío river (Chile) was selected since the watershed includes urban settlements and economic activities (i.

View Article and Find Full Text PDF

The effective removal of emerging contaminants of concern (ECCs) such as endocrine-disrupting chemicals, pharmaceutically active compounds, personal care products, and flame retardants is a desirable water treatment goal. In this study, one activated carbon, one carbonaceous resin, and two high-silica zeolites were studied to evaluate their effectiveness for the removal of an ECC mixture from lake water. Adsorption isotherm experiments were performed with a mixture of 28 ECCs at environmentally relevant concentrations ( approximately 200-900 ng/L).

View Article and Find Full Text PDF

Widespread use of the fuel additive methyl tertiary-butyl ether (MTBE) has led to frequent MTBE detections in North American and European drinking water sources. The overall objective of this research was to evaluate the effectiveness of a silicalite zeolite, a carbonaceous resin, and a coconut-shell-based granular activated carbon (GAC) for the removal of MTBE from water. Isotherm and short bed adsorber tests were conducted in ultrapure water and river water to obtain parameters describing MTBE adsorption equilibria and kinetics and to quantify the effect of natural organic matter (NOM) on MTBE adsorption.

View Article and Find Full Text PDF