ATAD2 is an epigenetic bromodomain-containing target which is overexpressed in many cancers and has been suggested as a potential oncology target. While several small molecule inhibitors have been described in the literature, their cellular activity has proved to be underwhelming. In this work, we describe the identification of a novel series of ATAD2 inhibitors by high throughput screening, confirmation of the bromodomain region as the site of action, and the optimization campaign undertaken to improve the potency, selectivity, and permeability of the initial hit.
View Article and Find Full Text PDFThe bromodomain and extraterminal (BET) protein BRD4 regulates gene expression via recruitment of transcriptional regulatory complexes to acetylated chromatin. Pharmacological targeting of BRD4 bromodomains by small molecule inhibitors has proven to be an effective means to disrupt aberrant transcriptional programs critical for tumor growth and/or survival. Herein, we report AZD5153, a potent, selective, and orally available BET/BRD4 bromodomain inhibitor possessing a bivalent binding mode.
View Article and Find Full Text PDFProteins of the bromodomain and extraterminal (BET) family, in particular bromodomain-containing protein 4 (BRD4), are of great interest as biological targets. BET proteins contain two separate bromodomains, and existing inhibitors bind to them monovalently. Here we describe the discovery and characterization of probe compound biBET, capable of engaging both bromodomains simultaneously in a bivalent, in cis binding mode.
View Article and Find Full Text PDFHere we report the discovery and optimization of a series of bivalent bromodomain and extraterminal inhibitors. Starting with the observation of BRD4 activity of compounds from a previous program, the compounds were optimized for BRD4 potency and physical properties. The optimized compound from this campaign exhibited excellent pharmacokinetic profile and exhibited high potency in vitro and in vivo effecting c-Myc downregulation and tumor growth inhibition in xenograft studies.
View Article and Find Full Text PDFFulvestrant is an estrogen receptor (ER) antagonist administered to breast cancer patients by monthly intramuscular injection. Given its present limitations of dosing and route of administration, a more flexible orally available compound has been sought to pursue the potential benefits of this drug in patients with advanced metastatic disease. Here we report the identification and characterization of AZD9496, a nonsteroidal small-molecule inhibitor of ERα, which is a potent and selective antagonist and downregulator of ERα in vitro and in vivo in ER-positive models of breast cancer.
View Article and Find Full Text PDFA series of tetrahydroisoquinoline phenols was modified to give an estrogen receptor downregulator-antagonist profile. Optimization around the core, alkyl side chain, and pendant aryl ring resulted in compounds with subnanomolar levels of potency. The phenol functionality was shown to be required to achieve highly potent compounds, but unusually this was compatible with obtaining high oral bioavailabilities in rat.
View Article and Find Full Text PDFThe discovery of an orally bioavailable selective estrogen receptor downregulator (SERD) with equivalent potency and preclinical pharmacology to the intramuscular SERD fulvestrant is described. A directed screen identified the 1-aryl-2,3,4,9-tetrahydro-1H-pyrido[3,4-b]indole motif as a novel, druglike ER ligand. Aided by crystal structures of novel ligands bound to an ER construct, medicinal chemistry iterations led to (E)-3-(3,5-difluoro-4-((1R,3R)-2-(2-fluoro-2-methylpropyl)-3-methyl-2,3,4,9-tetrahydro-1H-pyrido[3,4-b]indol-1-yl)phenyl)acrylic acid (30b, AZD9496), a clinical candidate with high oral bioavailability across preclinical species that is currently being evaluated in phase I clinical trials for the treatment of advanced estrogen receptor (ER) positive breast cancer.
View Article and Find Full Text PDFHere, we describe an approach to identify novel selective estrogen receptor downregulator (SERD) compounds with improved properties such as oral bioavailability and the potential of increased efficacy compared to currently marketed drug treatments. Previously, methodologies such as Western blotting and transient cell reporter assays have been used to identify and characterize SERD compounds, but such approaches can be limited due to low throughput and sensitivity, respectively. We have used an endogenous cell-imaging strategy that has both the throughput and sensitivity to support a large-scale hit-to-lead program to identify novel compounds.
View Article and Find Full Text PDFContinued androgen receptor (AR) expression and signaling is a key driver in castration-resistant prostate cancer (CRPC) after classical androgen ablation therapies have failed, and therefore remains a target for the treatment of progressive disease. Here, we describe the biological characterization of AZD3514, an orally bioavailable drug that inhibits androgen-dependent and -independent AR signaling. AZD3514 modulates AR signaling through two distinct mechanisms, an inhibition of ligand-driven nuclear translocation of AR and a downregulation of receptor levels, both of which were observed in vitro and in vivo.
View Article and Find Full Text PDFRemoval of the basic piperazine nitrogen atom, introduction of a solubilising end group and partial reduction of the triazolopyridazine moiety in the previously-described lead androgen receptor downregulator 6-[4-(4-cyanobenzyl)piperazin-1-yl]-3-(trifluoromethyl)[1,2,4]triazolo[4,3-b]pyridazine (1) addressed hERG and physical property issues, and led to clinical candidate 6-(4-{4-[2-(4-acetylpiperazin-1-yl)ethoxy]phenyl}piperidin-1-yl)-3-(trifluoromethyl)-7,8-dihydro[1,2,4]triazolo[4,3-b]pyridazine (12), designated AZD3514, that is being evaluated in a Phase I clinical trial in patients with castrate-resistant prostate cancer.
View Article and Find Full Text PDFChemical starting points were investigated for downregulation of the androgen receptor as an approach to treatment of advanced prostate cancer. Although prototypic steroidal downregulators such as 6a designed for intramuscular administration showed insufficient cellular potency, a medicinal chemistry program derived from a novel androgen receptor ligand 8a led to 6-[4-(4-cyanobenzyl)piperazin-1-yl]-3-(trifluoromethyl)[1,2,4]triazolo[4,3-b]pyridazine (10b), for which high plasma levels following oral administration in a preclinical model compensate for moderate cellular potency.
View Article and Find Full Text PDFMitochondria are principal mediators of apoptosis and thus can be considered molecular targets for new chemotherapeutic agents in the treatment of cancer. Inhibitors of mitochondrial complex I of the electron transport chain have been shown to induce apoptosis and exhibit antitumor activity. In an effort to find novel complex I inhibitors which exhibited anticancer activity in the NCI's tumor cell line screen, we examined organized tumor cytotoxicity screening data available as SOM (self-organized maps) (http://www.
View Article and Find Full Text PDFAn integrated, bioinformatic analysis of three databases comprising tumor-cell-based small molecule screening data, gene expression measurements, and PDB (Protein Data Bank) ligand-target structures has been developed for probing mechanism of drug action (MOA). Clustering analysis of GI50 profiles for the NCI's database of compounds screened across a panel of tumor cells (NCI60) was used to select a subset of unique cytotoxic responses for about 4000 small molecules. Drug-gene-PDB relationships for this test set were examined by correlative analysis of cytotoxic response and differential gene expression profiles within the NCI60 and structural comparisons with known ligand-target crystallographic complexes.
View Article and Find Full Text PDFMotivation: Data mining tools are proposed to establish mechanistic connections between chemotypes and specific cellular functions. Drawing on a previous study that classified the cellular response patterns of growth inhibition measurements log( GI(50)) from the National Cancer Institute's (NCI's) anticancer screen, we have examined additional data for mRNA expression, sets of known molecular targets and mutational status against these same tumor cell lines to relate chemosensitivity more precisely to biochemical pathways.
Results: Our analysis finds that gene expression levels do not, in general, correlate with log(GI(50)) measurements, instead they reflect a generic toxic condition.
We propose an integrated application of technologies, computation and statistical methods to design experiments for examination of cellular pathways that are necessary for cell survival and that are candidates for cancer therapy. Our design combines information derived from two very different data sets: tumor screening data from over 36,000 synthetic compounds screened against over 60 tumor cell lines, and replicate microarray gene expression measurements using one cell line and one compound. Data filtering, based on restricted cellular cytotoxicity profiles from chemically similar sets of compounds, has been used to select a class of benzothiazoles for subsequent microarray gene expression measurements in the most chemosensitive tumor cell line.
View Article and Find Full Text PDFAn unsupervised self-organizing map-based clustering strategy has been developed to classify tissue samples from an oligonucleotide microarray patient database. Our method is based on the likelihood that a test data vector may have a gene expression fingerprint that is shared by more than one tumor class and as such can identify datasets that cannot be unequivocally assigned to a single tumor class. Our self-organizing map analysis completely separated the tumor from the normal expression datasets.
View Article and Find Full Text PDFWe have investigated three different microarray datasets of approximately 6 K gene expressions across the National Cancer Institute's panel of 60 tumor cell lines. Initial assessments of reproducibility for gene expressions within each dataset, as derived from sequence analysis of full-length sequences as well as expressed sequence tags (EST), found statistically significant results for no more than 36% of those cases where at least one replicate of a gene appears on the array. Filtering the data based only on pairwise comparisons among these three datasets creates a list of approximately 400 significant concordant expression patterns.
View Article and Find Full Text PDFIncreasing insight into the genetics and molecular biology of cancer has resulted in the identification of an increasing number of potential molecular targets for anti-cancer drug discovery and development. These targets can be approached through exploitation of emerging structural biology, "rational" drug design, screening of chemical libraries, or a combination of these methods. In this article we discuss the application of high-throughput screening to anti-cancer drug discovery, with special reference to approaches used at the U.
View Article and Find Full Text PDFIn an effort to enhance access to information available in the National Cancer Institute's (NCI) anticancer drug-screening database, a new suite of Internet accessible (http://spheroid. ncifcrf.gov) computational tools has been assembled for self-organizing map-based (SOM) cluster analysis and data visualization.
View Article and Find Full Text PDF