Publications by authors named "Alfred P Weber"

This study aims to fine-tune the plasma composition with a particular emphasis on reactive nitrogen species (RNS) including nitrogen dioxide (NO), dinitrogen pentoxide (NO), and nitrous oxide (NO), produced by a self-constructed cylindrical dielectric barrier discharge (CDBD). We demonstrated the effective manipulation of the plasma chemical profile by optimizing electrical properties, including the applied voltage and frequency, and by adjusting the nitrogen and oxygen ratios in the gas mixture. Additionally, quantification of these active species was achieved using Fourier transform infrared spectroscopy.

View Article and Find Full Text PDF

Spark ablation was used to continuously synthesize bimetallic L1 Pt/Fe nanoparticles in an aerosol process involving a furnace and hydrogen as a reducing process gas. For the formation of Pt/Fe in the favorable L1 crystal configuration, which is a promising electrocatalyst, the Pt-Fe ratio plays a crucial role. State-of-the-art analytics for such multi-element nanoparticles include, among others, electron microscopy (EM) with an element mapping function, such as scanning transmission electron microscopy with energy-dispersive X-ray spectroscopy (STEM-EDXS).

View Article and Find Full Text PDF

Flotation of the mineral lithium aluminate by application of the natural product punicine from Punica granatum and some derivatives as collectors is examined. Punicines, 1-(2',5'-dihydroxyphenyl)-pyridinium compounds, are switchable molecules whose properties can be changed reversibly. They exist as cations, neutral mesomeric betaines, anions, and dianions depending on the pH.

View Article and Find Full Text PDF

Derivatives of the natural product punicine [1-(2',5'-dihydroxyphenyl)pyridinium chloride] were developed as switchable collectors for the flotation of lithium-containing engineered artifical minerals (EnAMs). These EnAMs are formed by pyrometallurgical processing of end-of-life lithium-ion batteries. Depending on the pH value and the lighting conditions, punicines exist in water as cations, two different electrostatically neutral mesomeric betaines, anionic tripoles, radical cations or radical anions.

View Article and Find Full Text PDF

This study investigates the effect of the macromolecular architecture of poly(vinylidene fluoride) (PVDF) on its thermally induced phase separation (TIPS) behavior and polymorphic crystallization in the PVDF/γ-butyrolactone (PVDF/γ-BL) system. Preparative PVDF fractions with specific macromolecular architecture and phase constitution are generated. The results show that PVDF's macromolecular architecture, particularly the degree of branching and regio-defects, plays a significant role in its temperature-dependent crystallization and resulting polymorphic phases.

View Article and Find Full Text PDF

The interaction of silane and water is discussed controversially in literature: some authors suggest monosilane and water react kinetically and sufficiently fast enough to remove water, while others state the reaction occurs only at elevated temperatures. This question is of technological interest for the removal of unavoidable water residues in Ar gases. Thermodynamic calculations show that virtually complete removal of water is expected with superstoichiometric silane addition.

View Article and Find Full Text PDF

Nanoparticles produced in technical aerosol processes exhibit often dendritic structures, composed of primary particles. Surprisingly, a small but consistent discrepancy was observed between the results of common aggregation models and in situ measurements of structural parameters, such as fractal dimension or mass-mobility exponent. A phenomenon which has received little attention so far is the interaction of agglomerates with admixed gases, which might be responsible for this discrepancy.

View Article and Find Full Text PDF

Large-pore mesoporous silica (LPMS) microspheres with tunable pore size have received intensive interest in the field of drug delivery due to their high storage capacity and fast delivery rate of drugs. In this work, a facile salt-assisted spray-drying method has been developed to fabricate LPMS microspheres using continuous spray-drying of simple inorganic salts as pore templates and colloidal SiO nanoparticles as building blocks, followed by washing with water to remove the templates. More importantly, the porosity of the LPMS microspheres can be finely tuned by adjusting the furnace temperature and relative concentration of the salt to SiO, which could lead to optimal pharmaceutical outcomes.

View Article and Find Full Text PDF

The possibilities and limitations using dielectrophoresis (DEP) for the dry classification of spherical aerosol particles was evaluated at low concentrations in a theoretical study. For an instrument with the geometry of concentric cylinders (similar to cylindrical DMA), the dependencies of target particle diameter [Formula: see text], resolution, and yield of the DEP classification on residence time, applied electric field strength, and pressure of the carrier gas were investigated. Further, the diffusion influence on the classification was considered.

View Article and Find Full Text PDF

Hollow mesoporous silica microsphere (HMSM) particles are one of the most promising vehicles for efficient drug delivery owing to their large hollow interior cavity for drug loading and the permeable mesoporous shell for controlled drug release. Here, we report an easily controllable aerosol-based approach to produce HMSM particles by continuous spray-drying of colloidal silica nanoparticles and Eudragit/Triton X100 composite (EUT) nanospheres as templates, followed by template removal. Importantly, the internal structure of the hollow cavity and the external morphology and the porosity of the mesoporous shell can be tuned to a certain extent by adjusting the experimental conditions (i.

View Article and Find Full Text PDF

Nanoparticles are coated in-flight with a plasma-enhanced chemical vapor deposition (PECVD) process at ambient or elevated temperatures (up to 300 °C). Two silicon precursors, tetraethyl orthosilicate (TEOS) and hexamethyldisiloxane (HMDSO), are used to produce inorganic silica or silica-organic shells on Pt, Au and TiO₂ particles. The morphology of the coated particles is examined with transmission electron microscopy (TEM) and the chemical composition is studied with Fourier-transform infrared spectroscopy (FTIR), Energy-dispersive X-ray spectroscopy (EDX) and X-ray photoelectron spectroscopy (XPS).

View Article and Find Full Text PDF

Here we report a novel, facile, and sustainable approach for the preparation of spherical submicrometer carbon nitride-based polymer composites by a continuous aerosol-photopolymerization process. In this regard, spherical mesoporous carbon nitride (SMCN) nanoparticles were initially prepared via a nanocasting approach using spray-drying synthesized spherical mesoporous silica (SMS) nanoparticles as hard templates. In addition to experimental characterization, the effect of porosity on the light absorption enhancement and consequently the generation rate of electron-hole pairs inside the SMCN was simulated using a three-dimensional finite difference time-domain (FDTD) method.

View Article and Find Full Text PDF

The plasma-based aerosol process developed for the direct coating of particles in gases with silicon oxide in a continuous chemical vapor deposition (CVD) process is presented. It is shown that non-thermal plasma filaments induced in a dielectric barrier discharge (DBD) at atmospheric pressure trigger post-DBD gas phase reactions. DBD operating conditions are first scanned to produce ozone and dinitrogen pentoxide.

View Article and Find Full Text PDF

Collision and electrostatic dispersion rates of airborne submicrometer TiO(2) agglomerates were measured and compared with the classical collision theory for spheres as well as with models accounting for the agglomerate structure in terms of the fractal dimension and electrostatic effects such as Coulomb and van der Waals interactions. According to the authors' knowledge, this is the first time that the agglomerate fractal dimension and electrostatic effects have been considered simultaneously in determining the collision frequency function of agglomerates. The observed enhancement in the collision frequency of agglomerates was found mainly to be a result of electrostatic particle interactions.

View Article and Find Full Text PDF