Publications by authors named "Alfred Maquet"

We investigate the ultrafast vibronic dynamics triggered by intense femtosecond infrared pulses in small molecules. Our study is based on numerical simulations performed with 2D model molecules and analyzed in the perspective of the renowned Lochfrass and bond-softening models. We give a new interpretation of the observed nuclear wave packet dynamics with a focus on the phase of the bond oscillations.

View Article and Find Full Text PDF

High harmonic spectroscopy gives access to molecular structure with Angström resolution. Such information is encoded in the destructive interferences occurring between the harmonic emissions from the different parts of the molecule. By solving the time-dependent Schrödinger equation, either numerically or with the molecular strong-field approximation, we show that the electron dynamics in the emission process generally results in a strong spectral smoothing of the interferences, blurring the structural information.

View Article and Find Full Text PDF

We have simulated two-color photoionization of N(2) by solving the time-dependent Schrödinger equation with a simple model accounting for the correlated vibronic dynamics of the molecule and of the ion N(2)(+). Our results, in very good agreement with recent experiments [Haessler et al., Phys.

View Article and Find Full Text PDF

We have investigated the fission following a Coulomb explosion in argon clusters (up to Ar800) irradiated by a femtosecond infrared laser with moderate intensity IL approximately 10(13) W cm(-2). We report the a priori surprising observation of well-defined velocity distributions of the ionized fragments Ar+n<50. This is interpreted by the formation of a valence shell excited charged ion, followed by relaxation, charge transfer by autoionizing collision at very short distance, and asymmetric fission.

View Article and Find Full Text PDF

Two distinct interpretations have been proposed to account for conspicuous enhancements of the ionization peaks in the high energy part of above-threshold ionization spectra. One of them ascribes the enhancement to a multiphoton resonance involving an excited state, while other analysis performed for zero-range model potential link it to "channel closings, " i.e.

View Article and Find Full Text PDF

With the help of a suitably chosen momentum-space analysis, we study some of the basic mechanisms governing the physics of the processes occurring when atoms are submitted to intense infrared laser pulses, with peak intensities 10(14) W cm(-2) View Article and Find Full Text PDF