Bats are tolerant to highly pathogenic viruses such as Marburg, Ebola, and Nipah, suggesting the presence of a unique immune tolerance toward viral infection. Here, we compared severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection of human and bat () pluripotent cells and fibroblasts. Since bat cells do not express an angiotensin-converting enzyme 2 (ACE2) receptor that allows virus infection, we transduced the human ACE2 (hA) receptor into the cells and found that transduced cells can be infected with SARS-CoV-2.
View Article and Find Full Text PDFUnlabelled: Congenital hearing loss is a common chronic condition affecting children in both developed and developing nations. Viruses correlated with congenital hearing loss include human cytomegalovirus (HCMV) and Zika virus (ZIKV), which causes congenital Zika syndrome. The mechanisms by which HCMV and ZIKV infections cause hearing loss are poorly understood.
View Article and Find Full Text PDFFlaviviruses are present on every continent and cause significant morbidity and mortality. In many instances, severe cases of infection with flaviviruses involve the invasion of and damage to the central nervous system (CNS). Currently, there are several mechanisms by which it has been hypothesized flaviviruses reach the brain, including the disruption of the blood-brain barrier (BBB) which acts as a first line of defense by blocking the entry of many pathogens into the brain, passing through the BBB without disruption, as well as travelling into the CNS through axonal transport from peripheral nerves.
View Article and Find Full Text PDFDuring pandemics, individuals exhibit differences in risk and clinical outcomes. Here, we developed single-cell high-throughput human susceptibility testing (scHi-HOST), a method for rapidly identifying genetic variants that confer resistance and susceptibility. We applied this method to influenza A virus (IAV), the cause of four pandemics since the start of the 20 century.
View Article and Find Full Text PDFMultiple coronaviruses have emerged independently in the past 20 years that cause lethal human diseases. Although vaccine development targeting these viruses has been accelerated substantially, there remain patients requiring treatment who cannot be vaccinated or who experience breakthrough infections. Understanding the common host factors necessary for the life cycles of coronaviruses may reveal conserved therapeutic targets.
View Article and Find Full Text PDFIn vitro tissue models hold great promise for modeling diseases and drug responses. Here, we used emulsion microfluidics to form micro-organospheres (MOSs), which are droplet-encapsulated miniature three-dimensional (3D) tissue models that can be established rapidly from patient tissues or cells. MOSs retain key biological features and responses to chemo-, targeted, and radiation therapies compared with organoids.
View Article and Find Full Text PDFVaccines targeting SARS-CoV-2 have been shown to be highly effective; however, the breadth against emerging variants and the longevity of protection remains unclear. Postimmunization boosting has been shown to be beneficial for disease protection, and as new variants continue to emerge, periodic (and perhaps annual) vaccination will likely be recommended. New seasonal influenza virus vaccines currently need to be developed every year due to continual antigenic drift, an undertaking made possible by a robust global vaccine production and distribution infrastructure.
View Article and Find Full Text PDFCancers (Basel)
February 2022
Sex hormones, such as estrogen and testosterone, are steroid compounds with well-characterized effects on the coordination and development of vertebrate reproductive systems. Since their discovery, however, it has become clear that these "sex hormones" also regulate/influence a broad range of biological functions. In this review, we will summarize some current findings on how estrogens interact with and regulate inflammation and immunity.
View Article and Find Full Text PDFThe type I interferon (IFN) response is an important component of the innate immune response to viral infection. Precise control of IFN responses is critical because insufficient expression of IFN-stimulated genes (ISGs) can lead to a failure to restrict viral spread, whereas excessive ISG activation can result in IFN-related pathologies. Although both positive and negative regulatory factors control the magnitude and duration of IFN signaling, it is also appreciated that several ISGs regulate aspects of the IFN response themselves.
View Article and Find Full Text PDFType I interferon (IFN) signaling in fetal tissues causes developmental abnormalities and fetal demise. Although pathogens that infect fetal tissues can induce birth defects through the local production of type I IFN, it remains unknown why systemic IFN generated during maternal infections only rarely causes fetal developmental defects. Here, we report that activation of the guanine nucleotide-binding protein-coupled estrogen receptor 1 (GPER1) during pregnancy is both necessary and sufficient to suppress IFN signaling and does so disproportionately in reproductive and fetal tissues.
View Article and Find Full Text PDFWhile vaccines are vital for preventing COVID-19 infections, it is critical to develop new therapies to treat patients who become infected. Pharmacological targeting of a host factor required for viral replication can suppress viral spread with a low probability of viral mutation leading to resistance. In particular, host kinases are highly druggable targets and a number of conserved coronavirus proteins, notably the nucleoprotein (N), require phosphorylation for full functionality.
View Article and Find Full Text PDFInfluenza A viruses (IAVs) encode their genome across eight, negative sense RNA segments. During viral assembly, the failure to package all eight segments, or packaging a mutated segment, renders the resulting virion incompletely infectious. It is known that the accumulation of these defective particles can limit viral disease by interfering with the spread of fully infectious particles.
View Article and Find Full Text PDFThe mitochondrial antiviral signaling protein (MAVS) orchestrates host antiviral innate immune response to RNA virus infection. However, how MAVS signaling is controlled to eradicate virus while preventing self-destructive inflammation remains obscure. Here, we show that protein geranylgeranylation, a posttranslational lipid modification of proteins, limits MAVS-mediated immune signaling by targeting Rho family small guanosine triphosphatase Rac1 into the mitochondria-associated endoplasmic reticulum (ER) membranes (MAMs) at the mitochondria-ER junction.
View Article and Find Full Text PDFInfluenza viruses infect approximately 20% of the global population annually, resulting in hundreds of thousands of deaths. While there are Food and Drug Administration (FDA) approved antiviral drugs for combating the disease, vaccination remains the best strategy for preventing infection. Due to the rapid mutation rate of influenza viruses, vaccine formulations need to be updated every year to provide adequate protection.
View Article and Find Full Text PDFInfluenza A virus (IAV) is a pathogen that poses significant risks to human health. It is therefore critical to develop strategies to prevent influenza disease. Many loss-of-function screens have been performed to identify the host proteins required for viral infection.
View Article and Find Full Text PDFInfluenza virus vaccine production is currently limited by the ability to grow circulating human strains in chicken eggs or in cell culture. To facilitate cost-effective growth, vaccine strains are serially passaged under production conditions, which frequently results in mutations of the major antigenic protein, the viral hemagglutinin (HA). Human vaccination with an antigenically drifted strain is known to contribute to poor vaccine efficacy.
View Article and Find Full Text PDF