Different cyanines absorbing in the NIR between 750 and 930 nm were applied to study the efficiency of both radical and cationic polymerization in combination with diaryliodonium salt. Variation of the connecting methine chain and structure of the terminal indolium moiety provided a deeper insight in the structure of the cyanine NIR-sensitizer and the efficiency to generate initiating radicals and conjugate acid. Photophysical studies were pursued by fluorescence spectroscopy providing a deeper understanding regarding the lifetime of the excited state and contribution of nonradiative deactivation resulting in generation of additional heat in the polymerization process.
View Article and Find Full Text PDFCyanines comprising either a benzo[e]- or benzo[c,d]indolium core facilitate initiation of radical photopolymerization combined with high power NIR-LED prototypes emitting at 805 nm, 860 nm, or 870 nm, while different oxime esters function as radical coinitiators. Radical photopolymerization followed an initiation mechanism based on the participation of excited states, requiring additional thermal energy to overcome an existing intrinsic activation barrier. Heat released by nonradiative deactivation of the sensitizer favored the system, even under conditions where a thermally activated photoinduced electron transfer controls the reaction protocol.
View Article and Find Full Text PDF