Publications by authors named "Alfonso Urbanucci"

Article Synopsis
  • Prostate cancer treatment resistance is a major challenge, with genomic studies revealing how cancer cells evade therapies, yet the tumor microenvironment's (TME) role remains unclear.
  • A study using advanced techniques on samples from 120 patients offers a detailed transcriptomic profile of the prostate TME throughout the treatment process.
  • The research highlights a unique cell type called club-like cells that interact with the immune system, suggesting their involvement in inflammation and resistance to androgen deprivation therapy, indicating they could be potential targets for new treatments.
View Article and Find Full Text PDF

Malignant ascites is commonly produced in advanced epithelial ovarian cancer (EOC) and serves as unique microenvironment for tumour cells. Acellular ascites fluid (AAF) is rich in signalling molecules and has been proposed to play a role in the induction of chemoresistance. Through in vitro testing of drug sensitivity and by assessing intracellular phosphorylation status in response to mono- and combination treatment of five EOC cell lines after incubation with AAFs derived from 20 different patients, we investigated the chemoresistance-inducing potential of ascites.

View Article and Find Full Text PDF

Background: Benign prostatic hyperplasia (BPH) is the most common urologic disease in aging males, affecting 50% of men over 50 and up to 80% of men over 80 years old. Its negative impact on health-related quality of life implores further investigation into its risk factors and strategies for effective management. Although the exact molecular mechanisms underlying pathophysiological onset of BPH are poorly defined, the current hypothesized contributors to BPH and lower urinary tract symptoms (LUTS) include aging, inflammation, metabolic syndrome, and hormonal changes.

View Article and Find Full Text PDF

Androgen Receptor (AR) signaling inhibitors, including enzalutamide, are treatment options for patients with metastatic castration-resistant prostate cancer (mCRPC), but resistance inevitably develops. Using metastatic samples from a prospective phase II clinical trial, we epigenetically profiled enhancer/promoter activities with H3K27ac chromatin immunoprecipitation followed by sequencing, before and after AR-targeted therapy. We identified a distinct subset of H3K27ac-differentially marked regions that associated with treatment responsiveness.

View Article and Find Full Text PDF

Metastatic and high-risk localized prostate cancer respond to hormone therapy but outcomes vary. Following a pre-specified statistical plan, we used Cox models adjusted for clinical variables to test associations with survival of multi-gene expression-based classifiers from 781 patients randomized to androgen deprivation with or without abiraterone in the STAMPEDE trial. Decipher score was strongly prognostic (p<2×10) and identified clinically-relevant differences in absolute benefit, especially for localized cancers.

View Article and Find Full Text PDF

Single-cell RNA sequencing studies have suggested that total mRNA content correlates with tumor phenotypes. Technical and analytical challenges, however, have so far impeded at-scale pan-cancer examination of total mRNA content. Here we present a method to quantify tumor-specific total mRNA expression (TmS) from bulk sequencing data, taking into account tumor transcript proportion, purity and ploidy, which are estimated through transcriptomic/genomic deconvolution.

View Article and Find Full Text PDF

Autophagy and autophagy-associated genes are implicated in a growing list of cellular, physiological, and pathophysiological processes and conditions. Therefore, it is ever more important to be able to reliably monitor and quantify autophagic activity. Whereas autophagic markers, such as LC3 can provide general indications about autophagy, specific and accurate detection of autophagic activity requires assessment of autophagic cargo flux.

View Article and Find Full Text PDF

The dysregulation of chromatin and epigenetics has been defined as the overarching cancer hallmark. By disrupting transcriptional regulation in normal cells and mediating tumor progression by promoting cancer cell plasticity, this process has the ability to mediate all defined hallmarks of cancer. In this review, we collect and assess evidence on the contribution of chromatin and epigenetic dysregulation in prostate cancer.

View Article and Find Full Text PDF

Background: Prostate cancer (PCa) is the second most common tumour diagnosed in men. Tumoral heterogeneity in PCa creates a significant challenge to develop robust prognostic markers and novel targets for therapy. An analysis of gene regulatory networks (GRNs) in PCa may provide insight into progressive PCa.

View Article and Find Full Text PDF

Guidelines for genetic testing have been established for multiple tumor types, frequently indicating the most confident molecularly targeted treatment options. However, considering the often-complex presentation of individual cancer patients, in addition to the combinatorial complexity and inherent uncertainties of molecular findings, deriving optimal treatment strategies frequently becomes very challenging. Here, we report a comprehensive analysis of a 68-year-old male with metastatic prostate cancer, encompassing pathology and MRI findings, transcriptomic results, and key genomics findings from whole-exome sequencing, both somatic aberrations and germline variants.

View Article and Find Full Text PDF

O-GlcNAc transferase (OGT) is a nutrient-sensitive glycosyltransferase that is overexpressed in prostate cancer, the most common cancer in males. We recently developed a specific and potent inhibitor targeting this enzyme, and here, we report a synthetic lethality screen using this compound. Our screen identified pan-cyclin-dependent kinase (CDK) inhibitor AT7519 as lethal in combination with OGT inhibition.

View Article and Find Full Text PDF

The MC1R/cAMP/MITF pathway is a key determinant for growth, differentiation, and survival of melanocytes and melanoma. MITF-M is the melanocyte-specific isoform of Microphthalmia-associated Transcription Factor (MITF) in human melanoma. Here we use two melanocyte cell lines to show that forced expression of hemagglutinin (HA) -tagged MITF-M through lentiviral transduction represents an oncogenic insult leading to consistent cell transformation of the immortalized melanocyte cell line Hermes 4C, being a melanocortin-1 receptor (MC1R) compound heterozygote, while not causing transformation of the MC1R wild type cell line Hermes 3C.

View Article and Find Full Text PDF

Long noncoding RNAs (lncRNAs) play pivotal roles in cancer development and progression, and some function in a highly cancer-specific manner. However, whether the cause of their expression is an outcome of a specific regulatory mechanism or nonspecific transcription induced by genome reorganization in cancer remains largely unknown. Here, we investigated a group of lncRNAs that we previously identified to be aberrantly expressed in prostate cancer (PC), called TPCATs.

View Article and Find Full Text PDF

Imprinted genes are highly expressed in the hypothalamus; however, whether specific imprinted genes affect hypothalamic neuromodulators and their functions is unknown. It has been suggested that Prader-Willi syndrome (PWS), a neurodevelopmental disorder caused by lack of paternal expression at chromosome 15q11-q13, is characterized by hypothalamic insufficiency. Here, we investigate the role of the paternally expressed Snord116 gene within the context of sleep and metabolic abnormalities of PWS, and we report a significant role of this imprinted gene in the function and organization of the 2 main neuromodulatory systems of the lateral hypothalamus (LH) - namely, the orexin (OX) and melanin concentrating hormone (MCH) - systems.

View Article and Find Full Text PDF

Inhibition of the androgen receptor (AR) by second-generation anti-androgens is a standard treatment for metastatic castration resistant prostate cancer (mCRPC), but it inevitably leads to the development of resistance. Since the introduction of highly efficient AR signalling inhibitors, approximately 20% of mCRPC patients develop disease with AR independent resistance mechanisms. In this study, we generated two anti-androgen and castration resistant prostate cancer cell models that do not rely on AR activity for growth despite robust AR expression (AR indifferent).

View Article and Find Full Text PDF

The incidence of treatment-related neuroendocrine prostate cancer (t-NEPC) is rising as more potent drugs targeting the androgen signaling axis are clinically implemented. Neuroendocrine transdifferentiation (NEtD), an putative initial step in t-NEPC development, is induced by androgen-deprivation therapy (ADT) or anti-androgens, and by activation of the β-adrenergic receptor (ADRB2) in prostate cancer cell lines. Thus, understanding whether ADRB2 is involved in ADT-initiated NEtD may assist in developing treatment strategies that can prevent or reverse t-NEPC emergence, thereby prolonging therapeutic responses.

View Article and Find Full Text PDF

O-GlcNAc transferase (OGT) is overexpressed in aggressive prostate cancer. OGT modifies intra-cellular proteins via single sugar conjugation (O-GlcNAcylation) to alter their activity. We recently discovered the first fast-acting OGT inhibitor OSMI-2.

View Article and Find Full Text PDF

Tumor evolution is based on the ability to constantly mutate and activate different pathways under the selective pressure of targeted therapies. Epigenetic alterations including those of the chromatin structure are associated with tumor initiation, progression and drug resistance. Many cancers, including prostate cancer, present enlarged nuclei, and chromatin appears altered and irregular.

View Article and Find Full Text PDF

Identifying the earliest somatic changes in prostate cancer can give important insights into tumor evolution and aids in stratifying high- from low-risk disease. We integrated whole genome, transcriptome and methylome analysis of early-onset prostate cancers (diagnosis ≤55 years). Characterization across 292 prostate cancer genomes revealed age-related genomic alterations and a clock-like enzymatic-driven mutational process contributing to the earliest mutations in prostate cancer patients.

View Article and Find Full Text PDF

Although second generation endocrine therapies have significantly improved survival, castration-resistant prostate cancer (CRPC) cells are eventually able to escape available hormonal treatments due to reactivation of androgen receptor (AR) signaling. Identification of novel, non-classical and druggable AR-target genes may provide new approaches to treat CRPC. Our previous analyses suggested that Aurora kinase A (AURKA) is regulated by androgens in prostate cancer cells that express high levels of AR.

View Article and Find Full Text PDF

Several oncogenic factors have been involved in prostate cancer progression. However, therapeutic approaches still focus on suppression of androgen receptor (AR) signaling. In fact, whereas the full-length AR incorporates a ligand-binding domain, which has become a drug target for competitive inhibitors, other transcription factors often do not have tractable binding pockets that aid drug development.

View Article and Find Full Text PDF

Global changes in chromatin accessibility may drive cancer progression by reprogramming transcription factor (TF) binding. In addition, histone acetylation readers such as bromodomain-containing protein 4 (BRD4) have been shown to associate with these TFs and contribute to aggressive cancers including prostate cancer (PC). Here, we show that chromatin accessibility defines castration-resistant prostate cancer (CRPC).

View Article and Find Full Text PDF

Prostate cancer is the most common male cancer and androgen receptor (AR) is the major driver of the disease. Here we show that Enoyl-CoA delta isomerase 2 (ECI2) is a novel AR-target that promotes prostate cancer cell survival. Increased ECI2 expression predicts mortality in prostate cancer patients (p = 0.

View Article and Find Full Text PDF

Prostate cancer (PCa) is the most common non-cutaneous cancer in men. The androgen receptor (AR), a ligand-activated transcription factor, constitutes the main drug target for advanced cases of the disease. However, a variety of other transcription factors and signaling networks have been shown to be altered in patients and to influence AR activity.

View Article and Find Full Text PDF

Background: Epigenetic information can be used to identify clinically relevant genomic variants single nucleotide polymorphisms (SNPs) of functional importance in cancer development. Super-enhancers are cell-specific DNA elements, acting to determine tissue or cell identity and driving tumor progression. Although previous approaches have been tried to explain risk associated with SNPs in regulatory DNA elements, so far epigenetic readers such as bromodomain containing protein 4 (BRD4) and super-enhancers have not been used to annotate SNPs.

View Article and Find Full Text PDF